Anti-adipogenic Effect of Kaempferol, a Component of Polygonati Rhizoma

황정(黃精)과 Kaempferol의 지방세포 분화 억제 효과

  • Jang, Jae-Sik (Dept. of Internal Medicine, College of Korean Medicine, Dongguk University) ;
  • Jeong, Ji-Cheon (Dept. of Internal Medicine, College of Korean Medicine, Dongguk University)
  • 장재식 (동국대학교 한의과대학 내과학교실) ;
  • 정지천 (동국대학교 한의과대학 내과학교실)
  • Received : 2010.01.20
  • Accepted : 2010.03.02
  • Published : 2010.03.30

Abstract

Objective: It has been reported that Polygonati rhizoma (Pr) has anti-hyperglycemia, anti-triglycemia, anti-diabetic, and anti-tumor activity. Total extract of Pr was tested to identify anti-adipogenic activity in 3T3-L1 differentiation and molecular mechanism of Pr in 3T3-L1 differentiation. Methods: Differentiation of 3T3-L1 pre-adipocyte was induced in the presence of Pr extract and kaempferol. The level of lipid accumulation was measured by Oil Red O staining. The expression of genes associated with adipocyte differentiation was measured by RT-PCR. Results: Extract of Pr and its component kaempferol reduced lipid accumulation in 3T3-L1 during adipogenesis and also reduced mRNA levels of genes associated with adipogenesis, such as adipsin, aP2, LPL, SERBP-1c and $PPAR{\gamma}$. Conclusions: In this study, we showed that the molecular mechanism of Pr and kaempferol activity is related to regulation of $PPAR{\gamma}$ expression and activation.

Keywords

References

  1. Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev. 1995;5(5):571-6. https://doi.org/10.1016/0959-437X(95)80025-5
  2. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995;64:345-73. https://doi.org/10.1146/annurev.bi.64.070195.002021
  3. Hamm JK, el Jack AK, Pilch PF, Farmer SR. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann N Y Acad Sci 1999;892:134-45. https://doi.org/10.1111/j.1749-6632.1999.tb07792.x
  4. Gregoire FM, Smas CM, Sul HS: Understanding adipocyte differentiation. Physiol Rev 1998;78(3):783-809.
  5. Park S, Hong SM, Ahn IS, Kim YJ, Lee JB. Huang-Lian-Jie-Du-Tang Supplemented with Schisandra chinensis Baill. and Polygonatum odoratum Druce Improved Glucose Tolerance by Potentiating Insulinotropic Actions in Islets in 90% Pancreatectomized Diabetic Rats. Biosci Biotechnol Biochem. 2009. (in press)
  6. 中醫硏究院 主編. 中醫症狀鑑別診斷學. 北京:人民衛生出版社. 1987:43.
  7. 張介賓. 景岳全書. 上海, 上海科學技術出版社. 1984:194.
  8. 焦東海. 全國 第3屆 肥胖病 學術交流會論文綜述. 中醫雜誌. 1992;3:47-8.
  9. Heo SY, Kang HS. East-Wast Medical Discussion and Treatment of Obesity. J Oriental Rehabilitation Medicine. 1997;7(1):272-86.
  10. Lee SI. Herbs. Seoul:Medical Herb Co. 1983:128-9. (Korean)
  11. Miura T, Kato A, Usami M, Kadowaki S, Seino Y. Effect of polygonati rhizoma on blood glucose and facilitative glucose transporter isoform 2 (GLUT2) mRNA expression in Wistar fatty rats. Biol Pharm Bull. 1995;18(4):624-5. https://doi.org/10.1248/bpb.18.624
  12. Kato A, Miura T. Hypoglycemic activity of polygonati rhizoma in normal and diabetic mice. Biol Pharm Bull. 1993;16(11):1118-20. https://doi.org/10.1248/bpb.16.1118
  13. Roh SW, Kim JB. Effects of Polygonati Rhizoma on the Diet-induced Hyperlipidemia in Rats. Korean J Oriental Physiology & Pathology. 2008;22(5):1147-51. (Korean)
  14. Kato A, Miura T, Yano H, Masuda K, Ishida H, Seino Y. Suppressive effects of polygonati rhizoma on hepatic glucose output, GLUT2 mRNA expression and its protein content in rat liver. Endocr J. 1994;41(2):139-44. https://doi.org/10.1507/endocrj.41.139
  15. Miura T, Kato A. The difference in hypoglycemic action between polygonati rhizoma and polygonati officinalis rhizoma. Biol Pharm Bull. 1995;18(11):1605-6. https://doi.org/10.1248/bpb.18.1605
  16. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols. Food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-47.
  17. Spencer JP. Flavonoids: modulators of brain function? Br J Nutr. 2008;99E Suppl1:ES60-77.
  18. Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi 2007;127(8). 1275-9. https://doi.org/10.1248/yakushi.127.1275
  19. Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol In Vitro. 2008;22(8):1965-70. https://doi.org/10.1016/j.tiv.2008.08.007
  20. Gabrielska J, Soczynska-Kordala M, Przestalski S. Antioxidative effect of kaempferol and its equimolar mixture with phenyltin compounds on UV-irradiated liposome membranes. J Agric Food Chem. 2005;53(1):76-83. https://doi.org/10.1021/jf0401120
  21. Kang JW, Kim JH, Song K, Kim SH, Yoon JH, Kim KS. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother Res. 2009. (in press)
  22. Li W, Du B, Wang T, Wang S, Zhang J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem Biol Interact. 2009;177(2):121-7. https://doi.org/10.1016/j.cbi.2008.10.048
  23. Kataoka M, Hirata K, Kunikata T, Ushio S, Iwaki K, Ohashi K, et al. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J Gastroenterol. 2001;36(1):5-9. https://doi.org/10.1007/s005350170147
  24. Park MJ, Lee EK, Heo HS, Kim MS, Sung B, Kim MK, et al. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food. 2009;12(2):351-8. https://doi.org/10.1089/jmf.2008.0006
  25. Lopez-Sanchez C, Martin-Romero FJ, Sun F, Luis L, Samhan-Arias AK, Garcia-Martinez V et al. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusioninduced damage in rat brain. Brain Res. 2007;1182:123-37. https://doi.org/10.1016/j.brainres.2007.08.087
  26. Middleton E, Jr., Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673-751.
  27. Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008;82(11-12):615-22. https://doi.org/10.1016/j.lfs.2007.12.021
  28. Lee CJ, Lee JH, Seok JH, Hur GM, Park Js J, Bae S, et al. Effects of betaine, coumarin and flavonoids on mucin release from cultured hamster tracheal surface epithelial cells. Phytother Res. 2004;18(4):301-5. https://doi.org/10.1002/ptr.1433
  29. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49(6):3106-12. https://doi.org/10.1021/jf000892m
  30. Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006;54(8):2951-6. https://doi.org/10.1021/jf052900a
  31. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999;19(8):5495-503.
  32. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 1996;16(7): 3410-9.
  33. Spiegelman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem. 1993;268(10):6823-6.
  34. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology. 2002;143(6):2106-18. https://doi.org/10.1210/en.143.6.2106
  35. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res. 2005;13(6):982-90. https://doi.org/10.1038/oby.2005.115
  36. Pinent M, Blade MC, Salvado MJ, Arola L, Hackl H, Quackenbush J, et al. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. Int J Obes (Lond). 2005;29(8):934-41. https://doi.org/10.1038/sj.ijo.0802988
  37. Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun. 2007;361(1):208-13. https://doi.org/10.1016/j.bbrc.2007.07.021
  38. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10(9):1096-107. https://doi.org/10.1101/gad.10.9.1096
  39. Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM. Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol. 1996;8(6):826-32. https://doi.org/10.1016/S0955-0674(96)80084-6