DOI QR코드

DOI QR Code

환경구배처리에 따른 떡갈나무의 생육 반응

The Growth Response of Quercus dentata Sapling to the Environmental Gradients Treatment

  • Lee, Sang-Kyoung (Department of Biology, Kongju National University) ;
  • You, Young-Han (Department of Biology, Kongju National University) ;
  • Yi, Hoon-Bok (Division of Environmental & Life Science, Seoul Women's University)
  • 투고 : 2010.03.20
  • 심사 : 2010.04.12
  • 발행 : 2010.04.30

초록

떡갈나무는 우리나라의 건조한 석회암 지역에 서식하는 주요한 교목이다. 본 연구는 떡갈나무의 생태적 특성을 밝히기 위하여 생육에 주요한 영향을 미치는 광, 수분 그리고 유기물 등의 환경요인을 각각 4구배로 하여 온실에서 유식물에 처리하여 생육반응을 관찰하고, 분석하였다. 광 구배에서 지상부, 지하부 그리고 식물체 무게는 높은 조건에서 잘 자랐고, 낮은 조건에서 못 자랐다. 지하부/지상부 비는 가장 높은 조건에서 제일 높았다. 수분 구배에서 모든 측정 항목에서 구배에 따른 생육의 차이가 없었다. 유기물 구배에서 지상부, 지하부 그리고 식물체 무게는 약간 높은 조건에서 잘 자랐고, 이보나 낮거나 높은 조건에서 못 자랐다. 이상으로 볼 때 떡갈나무의 생육은 수분 조건보다는 광 조건과 유기물 조건에 의하여 더 큰 영향을 받는 것으로 나타났다.

Quercus dentata (Thunb. ex Murray) is a major tree found in dry habitats such as limestone areas of Korea. In order to characterize the ecological traits of Q. dentata, we treated Q. dentata saplings under four gradient levels of major environment factors such as light, soil moisture and nutrients for 5 months in a glass house. We then measured and analyzed growth differences among them. Regarding light, aboveground, belowground and plant biomass were highest at a high gradient and lowest at a low one. The root/shoot ratio was highest at the highest light gradient. Regarding moisture, no measured items were significantly affected by the moisture gradient. Regarding nutrients, aboveground, belowground and plant biomass were the highest at a slightly high gradient and the lowest at a gradient lower or higher than this. The root/shoot ratio was not significantly affected by the nutrient gradient. From these results, it was shown that the growth of Q. dentata was more affected by light and nutrients in the environment than moisture.

키워드

참고문헌

  1. Baek, M. S. 1995. A comparison of the establishment and growth of seedlings among three Quercus species. Master's Thesis, Catholic University, Seoul, Korea.
  2. Barbour, M. G., J. H. Burk, and W. D. Pitts. 1987. Terrestrial plant ecology. 2nd eds., The Benjamin. Cummings Publishing Company.
  3. Brand, D. G. 1991. The establishment of boreal and sub-boreal conifer plantation: an integrated analysis of environmental conditions and seeding growth. For. Sci. 37, 68-100.
  4. Burton, P. J. and F. A. Bzzaz. 1991. Tree seeding emergence on interactive temperature and moisture gradients and in patches of old-field vegetation. Am. J. Bot. 78, 131-149. https://doi.org/10.2307/2445236
  5. Chung, D. K. and K. H. Min. 1990. A study on the relative decay durability for development of utilization of Quercus species. Educational Research Journal, Univ. of Konkuk, Seoul, Korea 13, 9-21.
  6. Fetcher, N., B. R. Strain, and S. F. Oberbauer. 1983. Effects of light regime on the growth, leaf morphology and water relations on seedlings of two species of tropical trees. Oecologia 58, 314-319. https://doi.org/10.1007/BF00385229
  7. Gulmon, S. L. and C. C. Chu. 1981. The effects of light and nitrogen on photosynthesis, leaf characteristics and dry matter allocation in the Chaparral shrub, Diplaucus aurantiacus. Oecologia 58, 314-319. https://doi.org/10.1007/BF00385229
  8. Ha, S. H. 1989. Performance and photosynthesis of seedlings of several Quercus plant grown under the different light intensities. Master's Thesis, Seoul National University, Seoul, Korea.
  9. Han, S. J., J. H. Kim, and Y. H. You. 2009. Selection on tolerant oak species to water flooding for flood plain restoration. Korean J. Wetl. Soc. 11, 1-7.
  10. Jeong, H. M., H. R. Kim, and Y. H. You. 2009. Crowth difference among saplings of Quercus acutissima, Q. variabilis and Q. mongolica under the environmental gradients treatment. Korean J. Environ. Biol. 27, 82-87.
  11. Jeong, T. H. and Y. C. Lee. 1965. A study of the Korean woody plant zone and favorable region for the growth and proper species. Collection of Thesis, Sungkyunkwan University, Seoul, Korea 10, 329-366.
  12. Kim, C. M., K. W. Kwon, and H. K. Moon. 1985. Variation of leaf form of leaf variabilities of natural population of Quercus spp. Korean J. For. Soc. 71, 82-89.
  13. Kim, J. H., H. T. Moon, and Y. S. Kwak. 1990. Community structure of soil properties of the Pinus densiflora forests in limestone areas. Korean J. Ecol. 13, 285-295.
  14. Kim, J. H., H. T. Moon, and Y. S. Kwak. 1991. Community structure and soil properties of Chinese Cork oak(Quercus variabilis) forests in limestone area. Korean J. Ecol. 14, 159-169.
  15. Kim, J. W. and J. H. Kim. 1994. Stomatal control and strategy segregation to drought stress in young trees of several oak species. Korean J. Ecol. 17, 241-249.
  16. Korea Forest Research Institute. 1987. Illustrated woody plants of Korea. Korea Forestry Service, Seoul, Korea.
  17. Korea Forest Research Institute. 1989. Studies on the development and utilization of Korean oak resources(II). pp. 3-4, Ministry of Science and Technology, Seoul, Korea.
  18. Kubitzki, K. 1993. Fagaceae. pp. 301-309, In Kubitzki, K., J. Rohwer, and V. Bittrich (eds.), The families and genera of vascular plants. Vol. II. Flowering Plants. Dicotyledons: Mongoliid, Hamamelid and Caryophyllid Families. Springer-Verlag, Berlin, Heidelberg.
  19. Lee, C. B. 2003. Coloured flora of Korea. pp.197-210, Hyangmunsa, Korea.
  20. Lee, D. K., K. I. Kwon, Y. H. Kim, and Y. S. Kim. 2000. Sprouting and sprout growth of four Quercus species (Q. mongilica, Q. variabilis, Q. acutissima and Q. dentata). Korean J. For. Energy 19, 61-68.
  21. Lee, C. S., W. K. Lee, J. H. Yoon, and C. C. Song. 2006. Distribution pattern of Pinus densiflora and Quercus Spp. sta nd in Korea using spatial statistic and GIS. Korean J. For. 95, 663-671.
  22. Lim, J. H. 1995. An oak and our culture. pp.125-126, Soomoon, Korea.
  23. Long, T. J. and R. H. Jones. 1996. Seeding growth strategies and seed size effect in fourteen oak species native to different soil moisture habitats. Trees 11, 1-8. https://doi.org/10.1007/s004680050051
  24. Mahall, B. E. and W. H. Schlesinger. 1982. Effects of irradiance on growth, photosynthesis and water use efficiency of seedlings of the Chaparral shrub, Ceanothus megacarpus. Oecologia 54, 291-299. https://doi.org/10.1007/BF00379995
  25. Menitsky, Yu. L. 2005. Oaks of Asia. Pp. 90, Science publishers, Inc., Enfield, New Hampshire.
  26. Mooney, H. A., W. E. Winner, and E. J. Pell. 1991. Response of plants to multiple stresses. Academic Press, Inc.
  27. Namkung, J. 2010. Production and nutrient cycling in the Quercus variabilis forest at Mt. Worak. Ph. D. Thesis, Kongju National University, Gongju, Korea.
  28. No, H. J. and H. Y. Jeong. 2002. The statistical analysis in which it is easy to know by statistica. pp.336-345, Hyungseul, Seoul, Kerea.
  29. Park, I. H., D. K. Lee, K. J. Lee, and G. S. Moon. 1996. Growth, biomass and net production of Quercus species. Korean J. For. Soc. 85, 76-83.
  30. Phares, R. E. 1971. Growth of red oak (Quercus rubra) seeding in relation to light and nutrients. Ecology 52, 669-672. https://doi.org/10.2307/1934157
  31. Racinc, C. H. 1971. Reproduction of three species of oak in relation to vegetational and environment gradients in the southern Blue Ridge. Bull. Torrey Botanic. Club 98, 297-310. https://doi.org/10.2307/2483968
  32. Song, I. G. and Y. K. Choi. 1997. Comparison of enzyme activities and environmental factor between the forest soil of two species in the family, Quercoideae. Korean J. Environ. Bio. 15, 131-139.
  33. Walter, H. 1973. Vegetation of the earth: in relation to climate and the Eco-physiological 1 Condition. Springer-Verlag, New York.
  34. Wang, C. W. 1961. The forest of China with a survey of grassland and desert vegetation. pp. 75-93, Harvard University, Cambridge, Massachusetts.
  35. Yi, H. B., S. H. Nam, and J. H. Kim. 2007. Transfer of calcium along trophic levels on limestone and Granitic Gneiss grassland. Korean J. Environ. Biol. 25, 228-238.

피인용 문헌

  1. Effects of Elevated CO2 and Temperature on the Leaf Morphological Responses of Quercus serrata and Quercus aliena, Potential Natural Vegetation of Riverine vol.15, pp.2, 2013, https://doi.org/10.17663/JWR.2013.15.2.171