A Study on the Ionic Conducting Characteristics of Electrolyte Membranes Containing KI and $I_2$ for Dye Sensitized Solar Cell

염료감응형 태양전지를 위한 KI 및 $I_2$를 포함하는 유기/무기 복합 전해질막의 이온전도특성에 대한 연구

  • Kang, Tae-Un (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Shin, Chun-Hwa (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Mi-Jung (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Nam-Jun (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 강태윤 (한국기술교육대학교 응용화학공학과) ;
  • 신춘화 (한국기술교육대학교 응용화학공학과) ;
  • 최미정 (한국기술교육대학교 응용화학공학과) ;
  • 구자경 (한국기술교육대학교 응용화학공학과) ;
  • 조남준 (한국기술교육대학교 응용화학공학과)
  • Received : 2009.12.12
  • Accepted : 2009.12.29
  • Published : 2010.03.30

Abstract

Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Poly (ethylene glycol) (PEG)s with various molecular weight (600, 1,500, 2,000 and 3,400) were ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with KI and $I_2$, and their ionic conducting behaviors were investigated. The ionic conductivity of the composite membrane was highly affected by PEG molecular weight. The highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 2,000. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane by PEG, MW 2,000 showed much higher ionic conductivity.

염료감응형 태양전지에 사용되기 위한 유기/무기 복합소재를 합성하였다. 다양한 분자량(600, 1,500, 2,000, 3,400)의 polyethylene glycol 양 끝단을 ethoxysilane기로 치환하여 전구체를 제조하였으며, 전구체간의 졸-겔 반응을 통하여 복합소재를 합성하였다. 전해질막은 유기/무기 복합소재를 KI 및 $I_2$로 도핑하여 제조하였으며, 제조한 전해질의 이온전도도 특성을 측정하였다. 전해질막의 이온전도도는 원료로 사용한 PEG에 크게 영향을 받았으며 가장 높은 이온전도도는 분자량 2,000의 PEG를 사용한 전해질막에서 볼 수 있었다. 복합전해질막은 이온전도도에 있어서 큰 향상을 보였다. PEO 전해질막에 비하여 분자량 2,000의 PEG를 사용하여 제조한 복합전해질막은 월등하게 높은 이온전도도를 보였다.

Keywords

References

  1. A. Nishimoto, K. Agehara, and N. Furuya, "High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains", Macromolecules, 32, 1541 (1999). https://doi.org/10.1021/ma981436q
  2. D. J. Harris, T. H. Bonagamba, K. Schumidt-Rohr, P. P Soo, D. R. Sadoway, and A. M. Mayers, "SolidState NMR Investigation of Block Copolymer Electrolyte Dynamics", Macromolecules, 35, 3772 (2002). https://doi.org/10.1021/ma0107049
  3. T. J. Cleij, L. W. Jenneskens, M. Wubbenhorst, and J. van Turnhout, "Comb Branched Polymer Electrolytes Based on Poly & Isqb (4,7,10,13-tetraoxatetradecyl) methyl silane & rsqb; and Lithitun Percholrate", Macromolecules, 32, 8663 (1999). https://doi.org/10.1021/ma990997u
  4. X. Hou and K. S. Siow, "Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes", Solid State Ionics, 147, 391 (2002). https://doi.org/10.1016/S0167-2738(02)00034-6
  5. F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, 394, 456 (1998). https://doi.org/10.1038/28818
  6. S. Chintapalli and R. Frech, "Effectof plasticizers on ionic association and conductivity in the $(PEO)_9-LiCF_3SO_3$ electrolyte", Macromolecules, 29, 3499 (1996). https://doi.org/10.1021/ma9515644
  7. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "Role of Transient Cross-Links for Transport Properties in Silver-Polymer Electrolytes", Macromolecules, 34, 6052 (2001). https://doi.org/10.1021/ma0020032
  8. S. M. Zahurak, K. L. Kaplan, E. A. Rietman, D. W. Murphy, and R. J. Cava, Macromolecules, 21, 654 (1988). https://doi.org/10.1021/ma00181a020
  9. G. P. Kalaignam, M. S. Kang, and Y. S. Kang, "Effects of compositions on properties of PEO-KI-$I_2$ salts polymer electrolytes for DSSC", Solid State Ionics, 177, 1091 (2006). https://doi.org/10.1016/j.ssi.2006.03.013
  10. G. Kastros, T Stergiopoulos, I. M. Arabatiz, G. K. Papadokostaki, and P. Falaras, "A solvent-free PolyImer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells", J. Photochem. Photobiol, 149, 191 (2002). https://doi.org/10.1016/S1010-6030(02)00027-8
  11. S. A. Ileperuma, M. A. K. L. Dissanyake, S. Somasunderam, and L. R. A. K. Bandara, "Photo-electrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes", Sol. Energy Mater. Sol. Cells, 84, 117 (2004). https://doi.org/10.1016/j.solmat.2004.02.040
  12. J. Kang, W. Li, X. Wang, Y. Lin, X. Xiao, and S. Fang, "Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells", Electrochim. Acta, 48, 2487 (2003). https://doi.org/10.1016/S0013-4686(03)00290-1
  13. J.-J. Jeong, K.-S. Yoon, J.-K. Choi, and Y-J. Kim, Y.-T. Hong, "Preparation and characterization of the $H_3PO_4$-doped sulfonated poly (acryl ether benzimidazole) membranes for polymer electrolyte membrane fuel cell", Membrane Journal, 16, 276 (2006).
  14. J.-J. Woo, R.-Q. Fu, S-J Seo, S.-H. Yum, and S.-H. Moon, "Improvement of oxidative stability for non-fluorinated membranes prepared by substituted styrene monomers", Membrane Journal, 17, 294 (2007).
  15. G. Tongzhai and S.-J. Oh, "PVA/SSA/HPA Composite membranes on the application to polymer electrolyte membrane fuel cell", Membrane Journal, 16, 9 (2006).
  16. S. W. Cheon, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly(vinyl alcohol)ion exchange membranes for direct methanol fuel cell", Membrane Journal, 13, 191 (2003).
  17. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, "Poly(butyl acrylate)/ Nal/$I_2$ electrolytes for dye-sensitized nanocrystalline $TiO_2$ Solar cells", Solid State Ionics, 147, 579 (2005).
  18. 최미정, 신춘화, 강태윤, 구자경, 조남준, "염료감응형 태양전지를 위한 유기/무기 복합 전해질막에 대한 연구", 멤브레인, 18, 345 (2008)
  19. X. Shen, W. Xu, J. Xu, G. Liang, H. Yang, and M. Yao, "Quasi-solid-state dye sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts", Solid State Ionics, 179, 2027 (2008).
  20. J. H. Park, J. H. Yum, S.-Y. Kim, M.-S. Kang, Y-G. Lee, S.-S. Lee, and Y. S. Kang, "Influence of salts on ionic diffusion in oligomer electrolytes and its implication in dye-sensitized solar cells", J. Photchem. Photobiol, 194, 148 (2008). https://doi.org/10.1016/j.jphotochem.2007.08.001
  21. B. Bhattacharya, J. Y. Lee, J. Geng, H.-T. Jung, and J.-K. Park, "Effect of cation size on solid polymer electrolyte based on dye sensitized solar cells", Langmuir, 25, 3276 (2009). https://doi.org/10.1021/la8029177