Multiscale Modeling and Simulation of Direct Methanol Fuel Cell

직접메탄올 연료전지의 Multiscale 모델링 및 전산모사

  • Kim, Min-Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Young-Hee (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jung-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Hong-Sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lim, Tae-Hoon (Center for Fuel Cell Research, KIST(Korea Institute of Science and Technology)) ;
  • Moon, Il (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김민수 (연세대학교 화공생명공학과) ;
  • 이영희 (연세대학교 화공생명공학과) ;
  • 김정환 (연세대학교 화공생명공학과) ;
  • 김홍성 (연세대학교 화공생명공학과) ;
  • 임태훈 (한국과학기술연구원) ;
  • 문일 (연세대학교 화공생명공학과)
  • Received : 2009.12.10
  • Accepted : 2010.01.26
  • Published : 2010.03.30

Abstract

This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

본 연구는 차세대 에너지원으로 주목 받고 있는 직접메탄올연료전지(Direct Methanol Fuel Cell, DMFC)에 대해 mutiscale 기법을 사용하여 DMFC의 MEA부분에 대한 상세 모델링 및 전산모사를 통한 이론적 고찰을 시도하였다. 본 연구에서 이용한 multiscale 모델링 방법은 공정시스템 공학의 kinetic 중심의 모델링 방법과 전산유체역학(Computational Fluid Dynamics, CFD)의 유동중심의 모델링 방법을 유기적으로 결합하여 모사 중간에 필요한 데이터 교환을 함으로써 정확한 모델링 및 전산모사 결과를 얻었다. CFD 모델링으로 유체 이동현상을 3차원으로 해석하였고, 동시에 복잡한 비선형 대수방정식으로 표현되는 반응속도, 전기화학반응을 DAE (Differential & Algebraic Equation) solver로 계산하였다. 모델은 메탄올의 산화반응과 산소의 환원반응을 중심으로 MEA (Membrane Electorde Assembly)부분에서 물리화학적, 전기적 현상 현상을 규명하고, 반응 메커니즘을 구성하였다. MEA 모델은 3차원 공간에서 변위를 가지는 3차원 모델로 구성하였으며, 정상상태 및 등온공정의 조건하에 수립되었다. 이를 통해 channel을 포함한 MEA 부분에서 발생되는 물리적, 화학적, 전기적 현상을 정확히 예측 할 수 있다. 본 연구를 통해 수행된 결과는 DMFC의 실험계획 및 운전조건을 도출함에 있어 매우 유용한 역할을 할 수 있을 것으로 사료되며, 추가적인 연구를 통해 DMFC의 상용화에 크게 이바지 할 수 있을 것으로 사료된다.

Keywords

References

  1. P. Argyropoulos, K. Scott, and W. M. Taama, "Modelling pressure distribution and anode/cathode streams vapour-liquid equilibrium composition in liquid feed direct methanol fuel cells", Chem. Eng. J., 78, 29 (2000). https://doi.org/10.1016/S1385-8947(99)00166-7
  2. K. Sundmacher and K. Scott. "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system", Chem. Eng. Sci., 54, 2927 (1999). https://doi.org/10.1016/S0009-2509(98)00344-3
  3. P. Argyropoulos, K. Scott, A. K. Shukla, and C. Jackson, "A semi-empirical model of the direct methanol fuel cell performance Part I. Model development and verification", J. Power Sources, 123, 190 (2003). https://doi.org/10.1016/S0378-7753(03)00558-5
  4. K. T. Jeng and C. W. Chen, "Modeling and simulation of a direct methanol fuel cell anode", J. Power Sources, 112, 367 (2002). https://doi.org/10.1016/S0378-7753(02)00399-3
  5. Z. H. Wang and C. Y. Wang, "Mathematical modelling of liquid-feed direct methanol fuel cells", J. Electrochem. Soc., 150(4), A508 (2003). https://doi.org/10.1149/1.1559061
  6. Z. H. Wang, C. Y. Wang, and K. S. Chen, "Two phase flow and transport in the air cathode of proton exchange membrane fuel cells", J. Power Sources, 94, 40 (2001). https://doi.org/10.1016/S0378-7753(00)00662-5
  7. A. A. Kulikovsky, "Analytical model of the anode side of DMFC: the effect of non-Tafel kinetics on cell performance", Electrochem. Commun., 5, 530 (2003). https://doi.org/10.1016/S1388-2481(03)00115-2
  8. A. A. Kulikovsky, "A method for analysis of DMFC performance curves", Electrochem. Commun., 5, 1030 (2003). https://doi.org/10.1016/j.elecom.2003.10.002
  9. http://www.pseenterprise.com/. November 19 (2006).
  10. http://www.fluent.com/. November 23 (2006).
  11. Y. J. Choi, S. T. Chung, M. Oh, and H. S. Kim, "Investigation of Crystallization in a Jet Y-Mixer by a Hybrid Computational Fluid Dynamics and Process Simulation Approach", Cryst. Growth. Des., 5(3), 959 (2005). https://doi.org/10.1021/cg049670x
  12. J. Larminie and A. Dicks, "Fuel Cell Systems Explained", John Wiley & Sons Ltd., 2nd edition (2003).
  13. V. A. Danilov, J. K. Lim, and I. Moon, "Three-dimensional two-phase CFD model for DMFC design of a direct methanol fuel cell", J. Power Sources, 162, 992 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.071
  14. K. Z. Yao et al., "A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells", Fuel Cells, 1-2, (2004).
  15. H. Galip, Guvelioglu and H. G. Stenger, "Computational fluid dynamic modeling of polymer electrolyte membrane fuel cells", J. Power Sources, 147, 95 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.011
  16. H. Dohle, R. lung, N. Kimiaie, J. Mergel, and M. Muller, "Interaction between the diffsion layer and the flow field of polymer electrolyte fuel cells-experiments and simulation studies", J. Power Sources, 124, 371 (2003). https://doi.org/10.1016/S0378-7753(03)00800-0
  17. G. Q. Lu and C. Y. Wang, "Electrochemical and flow characterization of a direct methanol fuel cell", J. Power Sources, 134, 33 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.055
  18. Y. M. Lee and H. B. Park, "Development of Membrane Materials for Direct Methanol Fuel Cell", Membrane Journal, 10(3), 103 (2000).
  19. N. W. Kim, "Study of Surface Properties on Fouling Resistance of Reverse Osmosis Membranes", Membrane Journal, 12(1), 28 (2002).
  20. J. H. Koh, J. A. Seo, S. H. Ahn, X. Zeng, and J. H. Kim, "Preparation of Proton Conducting Anhydrous Membranes Using Poly(vinyl chloride) Comb-like Copolymer", Membrane Journal, 19(2), 89 (2009).