Nafion Impregnated Electrospun Polyethersulfone Membrane for PEMFC

Nafion 용액 함침과 전기방사를 이용한 고분자 전해질 연료전지용 폴리에테르술폰 막

  • Lee, Hong-Yeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Hwang, Hyung-Kwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Sang-Sun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Sung-Won (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이홍연 (연세대학교 화공생명공학과) ;
  • 황형권 (연세대학교 화공생명공학과) ;
  • 박상선 (연세대학교 화공생명공학과) ;
  • 최성원 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2009.12.08
  • Accepted : 2010.02.26
  • Published : 2010.03.30

Abstract

In this study, we manufactured the membrane using the polyethersulfone (PES) of fiber by using the electrospinning method. The polymer electrolyte membrane for fuel cells was manufactured by impregnating Nafion solution to the porous PES membrane. We confirmed that electrospun PES membrane has higher thermal stability than Nafion 212 membrane by thermogravimetric analysis. Impregnated Nafion in the pores of the electrospun PES membrane was characterized by scanning electron microscopy. The AC impedance data shows the hydrogen ionic conductivity of $10^{-2}$ S/cm below $100^{\circ}C$. Nafion impregnated PES membrane shows the maximum performance at $90^{\circ}C$ showing current density of 389 mA/$cm^2$ at 0.6 V, while Nafion 212 membrane shows maximum at $75^{\circ}C$.

본 연구에서는 내열성 고분자인 폴리에테르술폰을 이용하여 전기방사의 방법으로 섬유 형태의 다공성 막을 제조하였다. 여기에 Nafion 용액을 함침 시켜 고분자 전해질 연료전지용 막을 제조하였다. 열중량 분석을 통해, 현재 고분자 전해질 막으로 상용화되어 널리 쓰이고 있는 Nafion 212보다 더 높은 열적 안정성을 갖는 것을 확인하였다. 주사전자현미경 측정을 통하여, 다공성의 폴리에테르술폰 막에 Nafion 용액이 수소이온 전도체로서 잘 함침 되어 있음을 확인할 수 있었다. AC impedance 측정 결과, $100^{\circ}C$ 이하의 온도범위에는 수소 이온 전도도가 $10^{-2}$ S/cm로 나왔으며, $100^{\circ}C$ 이상의 범위에서는 $10^{-3}$ S/cm의 값을 나타냈다. 0.6 V, $90^{\circ}C$의 조건에서 389 mA/$cm^2$의 전류밀도를 나타내었다. Nafion 212 상용 막이 $75^{\circ}C$에서 최대 성능을 나타내는데 반해, Nafion 용액을 함침시킨 폴리에테르술폰 막은 $90^{\circ}C$에서 최대 성능을 갖는 것으로 나타났다.

Keywords

References

  1. H. P. Dhar, "On solid polymer fuel cells", J. Electroanal. Chem., 357, 237 (1993). https://doi.org/10.1016/0022-0728(93)80382-R
  2. A. J. Appleby, "Recent Developments and Applications of the Polymer Fuel Cell", Philos. Trans. R. Soc. London Ser. A., 354, 1681 (1996). https://doi.org/10.1098/rsta.1996.0073
  3. J. P. Sheosmith, R. D. Collins, M. J. Oakley, and D. K. Stevenson, "Status of solid polymer fuel cell system development", J. Power Sources, 49, 129 (1994). https://doi.org/10.1016/0378-7753(93)01804-Q
  4. J. H. Koh, J. A. Seo, S. H. Ahn, X, Zeng, and J. H. Kim, "Preparation of proton conducting anhydrous membranes using poly(vinyl chloride) comb-like opolymer", Membrane Journal, 19, 89 (2009).
  5. D. J. Kim, H. Y. Hwang, H. J. Kim, and S. Y. Nam, "Preparation and Characterization of Polysulfone Substrate for Reinforced Composite Membrane Fuel Cell Membrane", Membrane Journal, 19, 63 (2009).
  6. O. Okada and K. Yokoyama, "Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications", Fuel Cell, 1, 72 (2008).
  7. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membrane for fuel cells operating above ${100^{\circ}C}$", Chem. Mater., 15, 4896 (2003). https://doi.org/10.1021/cm0310519
  8. P. Krishnan, J. S. Park, T. H. Yang, W. Y. Lee, and C. S. Kim, "Sulfonated poly(ether ether ketone)based composite membrane for polymer electrolyte membrane fuel cell", J. Power Sources, 163, 2 (2006).
  9. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group : proton and methanol transport through membranes", Membrane Journal, 238, 143 (2004). https://doi.org/10.1016/j.memsci.2004.03.030
  10. K. J. Kwon, T. Y. Kim, D. Y. Yoo, S. G. Hong, and J. O. Park, "Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid", J. Power Sources, 188, 463 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.104
  11. B. Yang and A. Manthiram, "Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells", Electrochemical and Solid-State Letters, 6, A229 (2003).
  12. R. J, H. R. Kunz, and J. M. Fenton, "Investigation of membrane property and fuel cell behaviour with sulfonated poly(ether ether ketone) elelctrolyte: Temperature and relative humidity effects", J. Power Sources, 150, 120 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.180
  13. H. J. Kim, N. N. Krishnan, S. Y. Lee, S. Y. Hwang, D. J. Kim, K. J. Jeong, J. K. Lee, E. A. Cho, J. Y. Lee, J. H. Han, H. Y. Ha, and T. H. Lim, "Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operation", J. Power Sources, 160, 353 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.088
  14. F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, and E. Passalacqua, "Sulfonated polysulfone inomer membranes for fuel cells", Solid Statd Ionics, 145, 47 (2001). https://doi.org/10.1016/S0167-2738(01)00912-2
  15. Y. Z. Fu and A. Manthiram, "Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells", J. Power Sources, 157, 222 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.007
  16. S. V. Kraemer, M. Puchner, P. Jannasch, A. Lundblad, and G. Lindbergh, "Gas Diffusion Electrodes and Membrane Electrode Assemblies Based on a Sulfonated Polysulfone for High-Temperature PEMFC", Journal of The Electrochemical Society, 153, A2077 (2006). https://doi.org/10.1149/1.2335979
  17. S. L. Chen, A. B. Bocarsly, and J. Benziger, "Nafion-Iayered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.214
  18. G. Taylor and Proc. R. Soc. "Disintegration of Water Drops in an Electric Field", London Ser. A., 280, 383 (1964). https://doi.org/10.1098/rspa.1964.0151
  19. S. N. Reznik, A. L. Yarin, A. Theron, and E. Zussman, "Transient and steady shapes of droplets attached to a surface in a strong electric field", J. Fluid Mech., 516, 349 (2004). https://doi.org/10.1017/S0022112004000679
  20. M. Colupeau and B. Prunet-Foch, "Electrostatic spraying of liquids in cone-jet mode", J. Electrost., 22, 135 (1989). https://doi.org/10.1016/0304-3886(89)90081-8
  21. A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Taylor cone and jetting from liquid droplets in electro spinning of nanofibers", J. Appl. Phys., 90, 4836 (2001). https://doi.org/10.1063/1.1408260
  22. J. J. Grodzinski, "Polymeric materials for fuel cells: concise review of recent studies", Polym. Adv. Technol., 18, 785 (2007). https://doi.org/10.1002/pat.935