Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes

Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성

  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 고주환 (연세대학교 화공생명공학과) ;
  • 서진아 (연세대학교 화공생명공학과) ;
  • 노동규 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2010.01.26
  • Accepted : 2010.03.16
  • Published : 2010.03.30

Abstract

A diblock copolymer of polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) was synthesized via atom transfer radical polymerization (ATRP), as revealed by FT-IR spectroscopy. The self-assembled block copolymer membrane was prepared and used to template the growth of silver nanoparticles in the solid state by the introduction of $AgCF_3SO_3$ precursor and UV irradiation process. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed the in situ formation of silver nanoparticles within the block copolymer membranes, and the size of nanoparticles were controlled by adjusting the moiety of hydrophilic POEM domains. PS-b-POEM block copolymer with a lower POEM content was effective in generating smaller size of metal nanoparticles.

원자전달 라디칼 중합을 이용하여 polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) 블록 공중합체를 합성하고, FT-IR을 통해 중합이 성공적으로 이루어졌음을 확인하였다. 또한 자기 조립된 블록 공중합체 막을 제조한 후, 전구체 $AgCF_3SO_3$ 도입과 UV 조사를 통해 고체상에서 은 나노입자를 성장시켰다. TEM 전자현미경과 UV-visible 분광학 분석을 통해 블록 공중합체 막의 내부에 은 나노입자가 형성된 것을 확인하였고, 또한 친수성 POEM 영역의 함량을 조절함으로써 나노입자의 크기를 조절할 수 있었다. 금속 나노입자를 제조하는 데 있어서 POEM 함량이 적은 블록 공중합체가 더 효과적임을 확인하였다.

Keywords

References

  1. H. Chung, K. Ohno, T. Fukuda, and R. J. Composto, "Internal Phase Separation Drives Dewetting in Polymer Blend and Nanocomposite Films", Macromolecules, 40, 384 (2007). https://doi.org/10.1021/ma062024h
  2. J. H. Choi, J. B. Lee, and I.-C. Kim, "A characterization of the nano-material MF membranes with excellent fouling resistance", Membrane Journal, 15, 289 (2005).
  3. J. Huang and T. Kunitake, "Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion", J. Mater Chem., 16, 4257 (2006). https://doi.org/10.1039/b609680h
  4. J. S. Park, J. W. Rhim, Y. S. Chung, Y. M. Lee, and S. Y. Nam, "Gas permeable properties of elastomer-clay nanocomposite membrane", Membrane Journal, 16, 144 (2006).
  5. J-F. Berret, N. Schonbeck, F. Gazeau, D. E. Kharrat, O. Sandre, A. Vacher, and M. Airiau, "Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging", J. Am. Chem. Soc., 128, 1755 (2006). https://doi.org/10.1021/ja0562999
  6. J. Wang, G. D. Liu, M. H. Engelhard, and Y. H. Lin, "Sensitive immunoassay of a biomarker tumor necrosis factor-$\alpha$ based on poly(guanine)-function-alized silica nanoparticle label", Anal. Chem., 78, 6974 (2006). https://doi.org/10.1021/ac060809f
  7. A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. M. Fan, and W. Ji, "Diblock copolymer templated nanohybrid thin films of highly ordered $TiO_2$ nanoparticle arrays in PMMA matrix", Chem. Mater., 18, 5876 (2006). https://doi.org/10.1021/cm061495f
  8. J.-F. Berret, K. Yokota, M. Morvan, and R. Schweins, "Polymer-nanoparticle complexes: From dilute solution to solid state", J. Phys. Chem. B, 110, 19140 (2006). https://doi.org/10.1021/jp0603177
  9. S. U. Hong, "Effects of substrates on nanofiltration characteristics of multilayer polyelectrolyte membranes", Membrane Journal, 18, 185 (2008).
  10. J. G. Huang, I. Ichinose, and T. Kunitake, "Nanocoating of natural cellulose fibers with conjugated polymer: Hierarchical polypyrrole composite materials", Chem. Commun., 1717 (2005).
  11. H. Chung, K. Ohno, T. Fukuda, and R. J. Composto, "Self-regulated structures in nanocomposites by directed nanoparticle assembly", Nano Lett., 5, 1878 (2005). https://doi.org/10.1021/nl051079e
  12. R. D. Deshmukh and R. J. Composto, "Surface Segregation and Formation of Silver Nanoparticles Created In situ in Poly(methyl Methacrylate) Films", Chem. Mater., 19, 745 (2007). https://doi.org/10.1021/cm062030s
  13. J. H. He and T. Kunitake, "Formation of silver nanoparticles and nanocraters on silicon wafers", Langmuir, 22, 7881 (2006). https://doi.org/10.1021/la0610349
  14. J. H. He, T. Kunitake, and T. Watanabe, "Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template", Chem. Commun., 795 (2005).
  15. N. Perkas, M. Shuster, G. Amirian, Y. Koltypin, and A. Gedanken, "Sonochemical immobilization of silver nanoparticles on porous polypropylene", J. Polym. Sci. A: Polym. Chem., 46, 1719 (2008). https://doi.org/10.1002/pola.22513
  16. J. Gao, Y. Sun, J. Zhou, Z. Zheng, H. Chen, W. Su, and Q. Zhang, "Preparation of Ag nanoparticles termini-protected side-chain liquid crystalline azobenzene polymers by RAFT polymerization", J. Polym. Sci. A: Polym. Chem., 45, 5380 (2007). https://doi.org/10.1002/pola.22282
  17. S. Cle'menson, L. David, and E. Espuche, "Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: Influence of thermal treatment", J. Polym. Sci. A: Polym. Chem., 45, 2657 (2007). https://doi.org/10.1002/pola.22020
  18. L.-M. Huang, C.-C. Tsai, T.-C. Wen, and A. Gopalan, "Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly (styrene sulfonic acid)", J. Polym. Sci. A: Polym. Chem., 44, 3843 (2006). https://doi.org/10.1002/pola.21479
  19. H.-T. Lee, Y.-C. Liu, and L.-H. Lin, "Characteristics of polypyrrole electrodeposited onto roughened substrates composed of gold-silver bimetallic nanoparticles", J. Polym. Sci. A: Polym. Chem., 44, 2724 (2006). https://doi.org/10.1002/pola.21385
  20. S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, "Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers", Colloids Suif. A, 289, 105 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.012
  21. Y. Shiraishi and N. Toshima, "Colloidal silver catalysts for oxidation of ethylene", J. Mol. Catal. A, 141, 187 (1999). https://doi.org/10.1016/S1381-1169(98)00262-3
  22. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, "Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor", Langmuir, 17, 574 (2001). https://doi.org/10.1021/la001038s
  23. Y. S. Kang, S. W. Kang, H. S. Kim, J. H: Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated ofefin transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  24. S. G. Boyes, B. Akgun, W. J. Brittain, and M. D. Foster, "Synthesis, characterization, and properties of polyelectrolyte block copolymer brushes prepared by atom transfer radical polymerization and their use in the synthesis of metal nanoparticles", Macromolecules, 36, 9539 (2003). https://doi.org/10.1021/ma035029c
  25. J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, "Facilitated transport of ethylene across polymer membranes containing silver salt: Effect of HBF on the photoreduction of silver ions", J. Membr. Sci., 212, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00451-9
  26. C. J. Huang and T. C. Chang, "Studies on the electromagnetic interference shielding effectiveness of metallized PVAc-AgNO/PET conductive films", J. Appl. Polym. Sci., 91, 270 (2004). https://doi.org/10.1002/app.12949
  27. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Effect of the polymer matrix on the formation of silver nanoparticles in polymer-silver salt complex membranes", J. Polym. Sci. B: Polym. Phys., 44, 1168 (2006). https://doi.org/10.1002/polb.20777
  28. J. H. Kim, C. K. Kim, J. Won, and Y. S. Kang, "Role of anions for the reduction behavior of silver ions in polymer/silver salt complex membranes", J. Membr. Sci., 250, 207 (2005). https://doi.org/10.1016/j.memsci.2004.10.032
  29. D. K. Lee, K. J. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, "Nanostructure, interactions and conductivities of polymer electrolytes comprising silver salt and microphase-separated graft copolymer", J. Polym. Sci. B: Polym. Phys., 45, 1018 (2007). https://doi.org/10.1002/polb.21086
  30. D. K. Lee, K. J. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, "Nanostructure, Interactions and Conductivities of Polymer Electrolytes Comprising Silver Salt and Microphase-separated Graft Copolymer", J. Polym. Sci. B: Polym. Phys., 45, 1018 (2007). https://doi.org/10.1002/polb.21086
  31. Y. W. Kim, D. K. Lee, K. J. Lee, B. R. Min, and J. H. Kim, "In-situ Formation of Silver Nanoparticles within Amphiphilic Graft Copolymer Film", J. Polym. Sci. B: Polym. Phys., 45, 1283 (2007). https://doi.org/10.1002/polb.21183
  32. D. B. Zhang, L. M. Qi, J. M. Ma, and H. M. Cheng, "Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer", Chem. Mater., 13, 2753 (2001). https://doi.org/10.1021/cm0105007
  33. Z. L. Lei and Y. H. Fan, "Preparation of silver nanocomposites stabilized by an amphiphilic block copolymer under ultrasonic irradiation", Mater. Lett., 60, 2256 (2006). https://doi.org/10.1016/j.matlet.2005.12.136
  34. P. Barnickel, A. Wokaun, W. Sager, and H. F. Eicke, "Size tailoring of silver colloids by reduction in W/O microemulsions", J. Colloid Interface Sci., 148, 80 (1992). https://doi.org/10.1016/0021-9797(92)90116-4
  35. L. M. Liz-Marzan and I. Lado-Tourino, "Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants", Langmuir, 12, 3585 (1996). https://doi.org/10.1021/la951501e