Fabrication and Stability of V/YSZ Cermet Membrane for Hydrogen Separation

수소 분리를 위한 V/YSZ cermet 분리막의 제조 및 안정성

  • Jeon, Sung-Il (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Jung-Hoon (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Lee, Sang-Jin (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Choi, Soo-Hyun (Green House Gas Research Center, Korea Institute of Energy Research)
  • 전성일 (한국에너지기술연구원 온실가스연구단) ;
  • 박정훈 (한국에너지기술연구원 온실가스연구단) ;
  • 이상진 (한국에너지기술연구원 온실가스연구단) ;
  • 최수현 (한국에너지기술연구원 온실가스연구단)
  • Received : 2010.01.13
  • Accepted : 2010.03.18
  • Published : 2010.03.30

Abstract

The powder mixture for fabricating the cermet membranes was prepared by mechanically mixing 60 vol.% vanadium with $Y_2O_3$-stabilized $ZrO_2$ (YSZ). The powder mixture was pressed into disks, which were then sintered in vacuum at $1600^{\circ}C$ for 2 h. As-sintered membrane was dense and mounted to a stainless steel ring with brazing filler. Hydrogen fluxes of V/YSZ membrane have been measured in the range of $200{\sim}350^{\circ}C$ with 100% $H_2$. The crack was formed in the both sides of membrane at $350^{\circ}C$ and pressure of 0.5 bar. During permeation experiment, vanadium of V/YSZ membrane reacted with hydrogen to form $V_2H$ which was the origin of crack formation.

Cermet 분리막 제조를 위한 혼합 분말은 60 vol.% vanadium과 $Y_2O_3$-stabilized $ZrO_2$ (YSZ)를 기계적으로 혼합하여 준비하였다. 혼합 분말을 원판으로 압축한 후 진공 분위기에서 $1600^{\circ}C$로 2시간동안 소결하였다. 소결 분리막은 치밀하였고, 브레이징 필러를 이용하여 스테인레스 링에 장착되었다. V/YSZ 분리막의 수소 투과량은 100% 수소를 흘려 $200{\sim}350^{\circ}C$ 범위에서 측정되었다. $350^{\circ}C$, 0.5 bar압력에서 분리막의 양 표면에 균열이 형성되었다. 투과실험 동안에 V/YSZ 분리막의 vanadium은 수소와 반응하여 $V_2H$를 생성하였으며, 이로 인해 분리막이 균열되는 것을 알 수 있었다.

Keywords

References

  1. R. E. Buxbaum and T. L. Marker, "Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium", J. Membr. Sci., 85, 29 (1993). https://doi.org/10.1016/0376-7388(93)85004-G
  2. M. V. Mundschau, X. Xie, and A. F. Sammells, "Carbon Dioxide Capture for Storage in Deep Geologic Formations", pp. 291-306, Elsevier Science, Amsterdam (2005).
  3. H. B. Park and Y. M. Lee, "High permeability, high selectivity carbon-silica membranes for gas separation", Membrane Journal, 12, 107 (2002).
  4. B. S. Kim, "Membrane for the separation of hydrogen", Membrane Journal, 4, 30 (1994).
  5. K. Takeuchi, C. K. Loong, J. W. Richardson, J. Guan, S. E. Dorris, and U, Balachandran, "The crystal structures and phase transitions in Y-doped $BaCeO_3$: their dependence on Y concentration and hydrogen doping", Solid State Ion., 138, 63 (2000). https://doi.org/10.1016/S0167-2738(00)00771-2
  6. C. Zuo, T. H. Lee, S. E. Donis, U, Balachandran, and M. Liu, "Composite Ni-Ba$(Zr_{0.1}Ce_{0.7}Y_{0.2})O_3$ membrane for hydrogen separation", J. Power Sources, 159, 1291 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.042
  7. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique", Int. J. Hydrog. Energy, 28, 297 (2003). https://doi.org/10.1016/S0360-3199(02)00065-4
  8. O. Iyoha, R. Enick, R. Killmeyer, and B. Morreale, "The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes", J. Membr. Sci., 305, 77 (2007). https://doi.org/10.1016/j.memsci.2007.07.032
  9. J. K. Ali, E. J. Newson, and D. W. T. Rippin, "Deactivation and regeneration of Pd = Ag membranes for dehydrogenation reactions", J. Membr. Sci., 89, 171 (1994). https://doi.org/10.1016/0376-7388(93)E0219-A
  10. U. Balachandran, T. H. Lee, L. Chen, S. J. Song, J. J. Picciolo, and S. E. Dorris, "Hydrogen separation by dense cermet membranes", Fuel, 85, 150 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
  11. E. H. Van Deventer, T. A. Renner, R. H. Pelto, and V. A. Maroni, "Effects of surface impurity layers on the hydrogen permeability of vanadium", J. Nucl. Mater., 64, 241 (1977). https://doi.org/10.1016/0022-3115(77)90075-7
  12. T. Namba, H. Miyaguchi, M. Yamawaki, and M. Kanno, "Hydrogen permeation through vanadium and the effect of surface impurity layer on IT", J. Nucl. Mater., 105, 318 (1982). https://doi.org/10.1016/0022-3115(82)90389-0
  13. M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L. D. Morpeth, and K. G. McLennan, "Composition and operation of hydrogen-selective amorphous alloy membranes", J. Membr. Sci., 285, 30 (2006). https://doi.org/10.1016/j.memsci.2006.09.014