Fabrication and Stability of Pd Coated Ta/YSZ Cermet Membrane for Hydrogen Separation

Pd 코팅된 Ta/YSZ 수소분리막의 제조 및 안정성

  • Lee, Sang-Jin (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Jeon, Sung-Il (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Jung-Hoon (Green House Gas Research Center, Korea Institute of Energy Research)
  • Received : 2010.01.13
  • Accepted : 2010.03.18
  • Published : 2010.03.30

Abstract

Cermet membrane was fabricated with tantalum as hydrogen-permeable metal and $Y_2O_3$-stabilized $ZrO_2$ (YSZ) as ceramic supporter. Ta/YSZ cermet membrane was prepared through pre-sintering in He atmosphere and then main sintering under high vacuum and the impurities to originate from sintering and brazing could be removed by mechanical polishing. As-prepared membrane showed dense structure with continuous channel of tantalum. Hydrogen permeation experiment was conducted in the region of $200{\sim}350^{\circ}C$ using Ta/YSZ membrane coated with Pd for hydrogen dissociation. The crack in membrane was formed at $300^{\circ}C$ and the Pd coating layer has flaked off in spots. XRD results showed that tantalum reacted with hydrogen to form $Ta_2H$. The lattice expansion by $Ta_2H$ caused deterioration for membrane.

수소투과금속인 tantalum과 세라믹 지지체로 $Y_2O_3$-stabilized $ZrO_2$ (YSZ)를 이용하여 cermet 수소분리막을 제조하였다. Ta/YSZ cermet 분리막은 헬륨분위기에서의 예비소결과 고진공 하에서의 본소결을 통해 제조하였으며, 소결 및 밀봉 과정에서 발생하는 불순물은 연마를 통해 제거 가능하였다. 이렇게 제조된 분리막은 tantalum의 연속상이 잘 발달된 치밀구조를 보였다. 수소 해리를 위해 팔라듐 코팅을 한 Ta/YSZ 분리막을 이용하여 $200{\sim}350^{\circ}C$의 범위에서 수소투과실험을 수행하였다. $300^{\circ}C$에서 분리막에 균열이 형성되었고 Pd 코팅층은 몇 곳이 박리되었다. XRD 결과는 tantalum이 수소와 반응하여 $Ta_2H$가 생성되는 것을 보여주며, $Ta_2H$에 인한 격자 팽창이 분리막의 결함을 초래하였다.

Keywords

References

  1. K. H. Lee, "Membrane separation of carbon dioxide", Membrane Journal, 4, 78 (1994).
  2. J. H. Park and I. H. Baek, "Status and prospect of pre-combustion $CO_2$ capture technology", Korean Ind. Chem. News, 12, 3 (2009).
  3. S. Y. Oh and K. S. Choi, "Current status of the application of gas separation membranes", Membrane Journal, 4, 63 (1994).
  4. J. H. Kim, W. I. Sohn, S. H. Choi, and S. B. Lee, "Preparation of asymmetric polyethersulfone hollow fiber membranes for flue gas separation", Membrane Journal, 15, 147 (2005).
  5. M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L. D. Morpeth, and K. G. Mclennan, "Composition and operation of hydrogen-selective amorphous alloy membranes", J. Membr. Sci., 285, 30 (2006). https://doi.org/10.1016/j.memsci.2006.09.014
  6. J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, and J: Kim, "A study on contamination of hydrogen permeable Pd-based membranes", Trans. of the Korean Hydrogen and New Energy Society, 14, 17 (2003).
  7. J. W. Phair and S. P. S. Badwal, "Review of proton conductors for hydrogen separation", Ionics, 12, 103 (2006). https://doi.org/10.1007/s11581-006-0016-4
  8. D. W. Kim, J. W. Park, S. H. Kim, and J. S. Park, "A study on the Pd-Ni alloy hydrogen membrane using the sputter deposition", J. Korean Institute of Suiface Eng., 37, 249 (2004).
  9. K. Takeuchi, C. K. Loong, J. W. Richardson, J. Guan, S. E. Dorris, and U. Balachandran, "The crystal structures and phase transitions in Y -doped BaCe03: their dependence on Y concentration and hydrogen doping", Solid State Ion., 138, 63 (2000). https://doi.org/10.1016/S0167-2738(00)00771-2
  10. M. Cai, S. Liu, K. Efimov, J. g. Caro, A. Feldhoff, and H. Wang, "Preparation and hydrogen penneation of $BaCe_{0.95}Nd_{0.05}O_{3-\delta}$ membranes", J. Membr. Sci., 343, 90 (2009). https://doi.org/10.1016/j.memsci.2009.07.011
  11. G. C. Mather, D. Poulidi, A. Thursfield, M. J. Pascual, J. R. Jurado, and I. S. Metcalfe, "Hydrogen-penneation characteristics of a $SrCeO_3$-based ceramic separation membrane: thermal, ageing and surface-modification effects", Solid State Ion., In Press.
  12. C. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, and M. Liu, "Composite $Ni-Ba(Zr_{0.1}Ce_{0.7}Y_{0.2})O_3$ membrane for hydrogen separation", J. Power Sources, 159, 1291 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.042
  13. S. Okada, A. Mineshige, T. Kikuchi, M. Kobune, and T. Yazawa, "Cennet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium", Thin Solid Films, 515, 7342 (2007). https://doi.org/10.1016/j.tsf.2007.02.095
  14. U. Balachandran, T. H. Lee, L. Chen, S. J. Song, J. J. Picciolo, and S. E. Dorris, "Hydrogen separation by dense cennet membranes", Fuel, 85, 150 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
  15. M. V. Mundschau, X. Xie, and A. F. Sammells, "Carbon Dioxide Capture for Storage in Deep Geologic Formations", pp. 291-306, Elsevier Science, Amsterdam (2005).
  16. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Preparation of palladium-coated V and V -15Ni membranes for hydrogen purification by electro less plating technique", Int. J. Hydrog. Energy, 28, 297 (2003). https://doi.org/10.1016/S0360-3199(02)00065-4
  17. R. E. Buxbaum and T. L. Marker, "Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium", J. Membr. Sci., 85, 29 (1993). https://doi.org/10.1016/0376-7388(93)85004-G
  18. K. S. Rothenberger, B. H. Howard, R. P. Killmeyer, A. V. Cugini, R. M. Enick, F. Bustamante, M. V. Ciocco, B. D. Morreale, and R. E. Buxbaum, "Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures", J. Membr. Sci., 218, 19 (2003). https://doi.org/10.1016/S0376-7388(03)00134-0