Rib 도파로 기반 집적 마흐젠더 간섭계 센서

An Integrated Mach-Zehnder Interferometric Sensor based on Rib Waveguides

  • 추성중 (고려대학교 전자공학과) ;
  • 박정호 (고려대학교 전자공학과) ;
  • 신현준 (한국과학기술연구원 의과학센터)
  • Choo, Sung-Joong (Dept. of Electronics Engineering, Korea University) ;
  • Park, Jung-Ho (Dept. of Electronics Engineering, Korea University) ;
  • Shin, Hyun-Joon (Biomedical research center, Korea Institute of Science and Technology)
  • 투고 : 2009.11.03
  • 심사 : 2010.03.11
  • 발행 : 2010.04.25

초록

평판형 rib 도파로의 설계 및 공정기술을 바탕으로 632.8 nm에서 동작하는 집적 마흐젠더 간섭계 센서(Mach-Zehnder interferometric sensor)를 제작하였다. 단일모드와 높은 감도의 두 가지 조건을 고려하여 실리카 계열($SiO_2-SiO_xN_y-SiO_2$) rib 도파로를 설계하였고 박막증착, 사진제판, RIE (Reactive Ion Etching)와 같은 반도체 공정들을 이용해 그 기하학적 구조를 구현하였다. 제작된 rib 도파로의 광출력을 cut-back방법으로 분석한 결과, 약 4.82 dB/cm의 전파손실을 측정하였다. 동시에 크롬 식각방지 층 공정을 도입하여 마흐젠더 간섭계 칩 위에 감지영역(sensing zone)을 형상화할 때 발생하는 코어 층 손상을 방지하였다. 제작된 마흐젠더 간섭계 센서를 이용한 증류수/에탄올 혼합물 굴절률 측정실험을 통해 약 $\pi$/($4.04{\times}10^{-3}$)의 소자 감도(sensitivity)를 최종 확인하였다.

An integrated Mach-Zehnder interferometric sensor operating at 632.8 nm was designed and fabricated by the technology of planar rib waveguides. Rib waveguide based on silica system ($SiO_2-SiO_xN_y-SiO_2$) was geometrically designed to have single mode operation and high sensitivity. It was structured by semiconductor fabrication processes such as thin film deposition, photolithography, and RIE (Reactive Ion Etching). With the power observation, propagation loss measurement by cut-back method showed about 4.82 dB/cm for rib waveguides. Additionally the chromium mask process for an etch stop was employed to solve the core damaging problem in patterning the sensing zone on the chip. Refractive index measurement of water/ethanol mixture with this device finally showed a sensitivity of about $\pi$/($4.04{\times}10^{-3}$).

키워드

참고문헌

  1. J. Pieher, A. Brandenburg, A. Brecht, E. Wagner and G. Gauglitz, "Characterization of grating couplers for affinity-based pesticide sensing," Appl. Optics, vol. 36, pp. 6554-6562, September 1997. https://doi.org/10.1364/AO.36.006554
  2. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam and J. S. Kanger, "Fast, ultrasensitive virus detection using a Young interferometer sensor," Nano. Lett., vol. 7, no. 2, pp. 394-397, 2007. https://doi.org/10.1021/nl062595n
  3. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montaya and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnol., vol. 14, pp. 907-912, July 2003. https://doi.org/10.1088/0957-4484/14/8/312
  4. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg and P. Meyrueis, "Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions," Biosens. Bioelectron., vol 22, no. 11, pp. 2591-2597, May 2007. https://doi.org/10.1016/j.bios.2006.10.016
  5. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528-539, October 2003. https://doi.org/10.1007/s00216-003-2101-0
  6. W. Lukosz, "Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosens. Bioelectron., vol. 6, no. 3, pp. 215-225, 1991. https://doi.org/10.1016/0956-5663(91)80006-J
  7. R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Actuat. B, vol. 61, no. 1-3, pp. 100-127, December 1999. https://doi.org/10.1016/S0925-4005(99)00283-X
  8. M. Kawachi, "Recent progress in silica-based planar lightwave circuits on silicon," IEE Proc. Optoelectron., vol. 143, no. 5, pp. 257-262, October 1996. https://doi.org/10.1049/ip-opt:19960493
  9. Y. P. Li and C. H. Henry, "Silica-based optical integrated circuits," IEE Proc. Optoelectron., vol. 143, no. 5, pp. 263-280, October 1996. https://doi.org/10.1049/ip-opt:19960840
  10. S. J. Choo, B.-C. Lee, S.-M. Lee, J. H. Park and H.-J. Shin, "Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor," J. Micromech. Microeng., vol. 19, no. 9, pp. 095007:1-9, September 2009.
  11. S. P. Pogossian, L. Vescan and A. Vonsovici, "The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section," IEEE J. Lightwave Technol., vol. 16, no. 10, pp. 1851-1853, October 1988.
  12. F. Dell'Olio, V. M. N. Passaro and F. D. Leonardis, "Sensitivity Analytic Calculation of Rib Waveguides for Sensing Applications," Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 201-204, Eindhoven, Netherlands, 2006.