DOI QR코드

DOI QR Code

Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst

  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.06.02
  • Accepted : 2010.06.21
  • Published : 2010.07.27

Abstract

For the present paper, we prepared MgO/MWCNT/$TiO_2$ photocatalyst by using multi-walled carbon nanotubes (MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate $(Mg(CH_2COO)_2\cdot4H_2O)$ and titanium n-butoxide $(Ti\{OC(CH_3)_3\}_4)$ as magnesium and titanium precursors. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decomposition of methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that the MgO/MWCNT/$TiO_2$ photocatalyst have cubic MgO structure and anatase $TiO_2$ structure. The porous structure and the $TiO_2$ agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can be also observed in MgO/MWCNT/$TiO_2$ photocatalyst from EDX results. The results of photodegradation of MB solution under UV light show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also, the MgO/MWCNT/$TiO_2$ photocatalyst has the best photocatalytic activity among these samples. It can be considered that the MgO/MWCNT/$TiO_2$ photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photoinduced electrons $(e^-)$, and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of $TiO_2$.

Keywords

References

  1. P. V. Kamat, Chem. Rev., 93, 267 (1993). https://doi.org/10.1021/cr00017a013
  2. Y. Nakaoka and Y. Nosaka, J. Photochem. Photobiol. A , 110, 299 (1997). https://doi.org/10.1016/S1010-6030(97)00208-6
  3. J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka and N. Serpone, Environ. Sci. Technol., 32, 2394 (1998). https://doi.org/10.1021/es9707926
  4. H. Park and W. Choi, J. Phys. Chem. B, 108, 4086 (2004). https://doi.org/10.1021/jp036735i
  5. P. V. Kamat, J. Phys. Chem. B, 106, 7729 (2002). https://doi.org/10.1021/jp0209289
  6. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna and G. Madrad, Langmuir, 20, 2900 (2004). https://doi.org/10.1021/la035777v
  7. Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 414, 625 (2001). https://doi.org/10.1038/414625a
  8. M. L. Chen and W. C. Oh, Analytical Science & Technology, 21, 229 (2008).
  9. M. L. Chen, F. J. Zhang and W. C. Oh, Analytical Science & Technology, 21, 553 (2008).
  10. M. L. Chen, F. J. Zhang and W. C. Oh, J. Kor. Ceram. Soc., 45, 651 (2008). https://doi.org/10.4191/KCERS.2008.45.1.651
  11. J. C. Charlier, Acc. Chem. Res., 35, 1063 (2002). https://doi.org/10.1021/ar010166k
  12. X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge, J. Photochem. Photobiol. A: Chem., 141, 209 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  13. S. H. C. Liang and I. D. Gay, J. Catal., 101, 293 (1986). https://doi.org/10.1016/0021-9517(86)90256-3
  14. A. N. Copp, Am. Ceram. Soc. Bull., 74, 135 (1995).
  15. P. D. Yang and C. M. Lieber, Science, 273, 1836 (1996). https://doi.org/10.1126/science.273.5283.1836
  16. G. P. Summers, T. M. Wilson, B. T. Jeffries, H. T. Tohver, Y. Chen and M. M. Abraham, Phys. Rev. B, 27, 1283 (1983). https://doi.org/10.1103/PhysRevB.27.1283
  17. G. H. Rosenblatt, M. W. Rowe, G. P. Williams, Jr., R. T. Williams and Y. Chen, Phys. Rev. B. 39, 10309 (1989). https://doi.org/10.1103/PhysRevB.39.10309
  18. J. L. Grant, R. Cooper, P. Zeglinski and J. F. Boas, J. Chem. Phys., 90, 807 (1989). https://doi.org/10.1063/1.456105
  19. Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang and B. W. Cheng, Chem. Mater., 13, 678 (2001). https://doi.org/10.1021/cm000230c
  20. H. Tada, M. Yamamoto and S. Ito, Langmuir, 14, 2936 (1998). https://doi.org/10.1021/la971015m
  21. H. Tada, Y. Kubo, M. Akazawa and S. Ito, Langmuir, 15, 3699 (1999). https://doi.org/10.1021/la9816712
  22. H. Tada, Y. Kubo, M. Akazawa and S. Ito, J. Electrochem. Soc., 147, 613 (2000). https://doi.org/10.1149/1.1393242
  23. J. Bandara, C. C. Hadapangoda and W. G. Jayasekera, Appl. Catal. B: Environ., 50, 83 (2004). https://doi.org/10.1016/j.apcatb.2003.12.021
  24. M. L. Chen, J. S. Bae and W. C. Oh, Bull. Kor. Chem. Soc., 27, 1423 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1423
  25. M. L. Chen, C. S. Lim and W. C. Oh, J. Ceram. Process. Res., 8, 119 (2007).
  26. W. C. Oh, F. J. Zhang and M. L. Chen, J. Ind. Eng. Chem., 16, 321 (2010). https://doi.org/10.1016/j.jiec.2010.01.032
  27. Y. Yu, J. C. Yu, C. Y. Chan, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong, Appl. Catal. B: Envir., 61, 1 (2005). https://doi.org/10.1016/j.apcatb.2005.03.008
  28. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani and M. R. Gholami, J. Hazard. Mater., 172, 1573 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.029
  29. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, M. Hosseini and M.R. Gholami, Prog. React. Kinet. Mech., 34, 55 (2009). https://doi.org/10.3184/146867809X413247
  30. W. C. Oh and M. L. Chen, Bull. Kor. Chem. Soc., 29, 159 (2008). https://doi.org/10.5012/bkcs.2008.29.1.159
  31. M. L. Chen, F. J. Zhang and W. C. Oh, New Carbon Materials, 24, 159 (2009). https://doi.org/10.1016/S1872-5805(08)60045-1
  32. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., 18, 583 (2008). https://doi.org/10.3740/MRSK.2008.18.11.583
  33. M. Che and A. J. Tench, Adv. Catal., 31, 77 (1982). https://doi.org/10.1016/S0360-0564(08)60453-8
  34. G. Pacchioni and A. M. Ferrari, Catal. Today, 50, 533 (1999). https://doi.org/10.1016/S0920-5861(98)00488-X