CONVERGENCE THEOREMS FOR DENJOY-PETTIS INTEGRABLE FUZZY MAPPINGS

  • Park, Chun-Kee (Department of Mathematics Kangwon National University)
  • Received : 2010.06.16
  • Accepted : 2010.08.19
  • Published : 2010.09.30

Abstract

In this paper, we introduce the Denjoy-Pettis integral of fuzzy mappings in Banach spaces and obtain some properties of the Denjoy-Pettis integral of fuzzy mappings and the convergence theorems for Denjoy-Pettis integrable fuzzy mappings.

Keywords

References

  1. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. https://doi.org/10.1016/0022-247X(65)90049-1
  2. B. Cascales and J. Rodriguez, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), 540-560. https://doi.org/10.1016/j.jmaa.2004.03.026
  3. L. Di Piazza and K. Musial, A decomposition theorem for compact-valued Hen- stock integral, Monatsh. Math. 148 (2006), 119-126. https://doi.org/10.1007/s00605-005-0376-2
  4. L. Di Piazza, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167-179. https://doi.org/10.1007/s11228-004-0934-0
  5. K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329-360. https://doi.org/10.1023/A:1026547222209
  6. R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford in- tegrals, Studia Math. 92 (1989), 73-91. https://doi.org/10.4064/sm-92-1-73-91
  7. R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., 1994.
  8. O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
  9. N. Papageoriou, On the theory of Banach space valued multifunctions, J. Mul- tivariate Anal. 17 (1985), 185-206. https://doi.org/10.1016/0047-259X(85)90078-8
  10. C. K. Park, Convergence theorems for set-valued Denjoy-Pettis integrable map- pings, Commun. Korean Math. Soc. 24 (2009), 227-237. https://doi.org/10.4134/CKMS.2009.24.2.227
  11. S. Saks, Theory of the Integral, Dover, New York, 1964.
  12. J. Wu and C. Wu, The w-derivatives of fuzzy mappings in Banach spaces, Fuzzy Sets and Systems 119 (2001), 375-381. https://doi.org/10.1016/S0165-0114(98)00468-0
  13. X. Xue, M. Ha and M. Ma, Random fuzzy number integrals in Banach spaces, Fuzzy Sets and Systems 66 (1994), 97-111. https://doi.org/10.1016/0165-0114(94)90303-4
  14. X. Xue, X.Wang and L.Wu, On the convergence and representation of random fuzzy number integrals, Fuzzy Sets and Systems 103 (1999), 115-125. https://doi.org/10.1016/S0165-0114(97)00150-4
  15. G. Ye, On Henstock-Kurzweil and McShane integrals of Banach space-valued functions, J. Math. Anal. Appl. 330 (2007), 753-765. https://doi.org/10.1016/j.jmaa.2006.08.020
  16. W. Zhang, Z. Wang and Y. Gao, Set-Valued Stochastic Process, Academic Press, Beijing, 1996.