PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES

  • 투고 : 2010.06.23
  • 심사 : 2010.09.11
  • 발행 : 2010.09.30

초록

In this paper we extend the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left R-modules to the projective properties of representations of quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\rightarrow}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. And we show $0{\rightarrow}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module if and only if $0{\rightarrow}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. Then we show if P is a projective left R-module then $R[x]\longrightarrow^{id}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. We also show that if $L\longrightarrow^{id}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module, then $L[x]\longrightarrow^{id}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules.

키워드

참고문헌

  1. R. Diestel, Graph Theory, G.T.M. No.88, Springer-Verlag, New York, 1997.
  2. E. Enochs, I. Herzog, S. Park, Cyclic quiver rings and polycyclic-by-finite group rings, Houston J. Math. 25(1)(1999), 1-13.
  3. E. Enochs, I. Herzog, A homotopy of quiver morphism with applications to rep- resentations, Canad. J. Math. 51(2)(1999), 294-308. https://doi.org/10.4153/CJM-1999-015-0
  4. S. Park, Projective representations of quivers, Int. J. Math. Math. Sci. 31(2)(2002), 97-101. https://doi.org/10.1155/S0161171202108192
  5. S. Park, D. Shin, Injective representation of quiver, Commun. Korean Math. Soc. 21(1)(2006), 37-43. https://doi.org/10.4134/CKMS.2006.21.1.037
  6. S. Park, Injective and projective properties of representation of quivers with n edges, Korean J. Math. 16(3)(2008), 323-334.
  7. S. Park, E. Enochs and H. Kim, Injective covers and envelopes of representation of linear quiver, Comm. Algebra 37(2)(2009), 515-524. https://doi.org/10.1080/00927870802250759
  8. J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York, 1979.