DOI QR코드

DOI QR Code

고속 PMIC용 2단 광대역 OTA방식의 LDO 레귤레이터 설계

Design of the LDO Regulator with 2-stage wide-band OTA for High Speed PMIC

  • 권보민 (인제대학교 나노시스템공학과) ;
  • 송한정 (인제대학교 나노공학부)
  • Kwon, Bo-Min (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Song, Han-Jung (Department of Nano Engeering, Inje University)
  • 투고 : 2010.01.22
  • 심사 : 2010.04.09
  • 발행 : 2010.04.30

초록

고속 PMIC를 위한 빠른 천이 응답 시간을 가지는 CMOS LDO 레귤레이터를 설계하였다. 제안하는 LDO 레귤레이터 회로는 기준전압회로와 오류증폭회로, 파워 트랜지스터 등으로 이루어지며, 출력전압의 안정성을 높이기 위하여 오류증폭 회로와 파워 트랜지스터 사이에 버퍼로써 2단 광대역 OTA를 추가하였다. 기존의 연구에서 제안된 가장 간단하게 구현할 수 있는 버퍼로는 소스팔로워 구조가 있으나, 출력 스윙이 좁고 신호 대 잡음비가 저하되는 문제점이 있었다. 본 논문에서는 2단 광대역 OTA를 버퍼로 사용하여 LDO 전압 레귤레이터의 출력 특성을 개선하였다. $0.5{\mu}m$ CMOS 공정을 이용하여 모의실험 한 결과, 라인 레귤레이션은 16 mV/V, 부하 레귤레이션 0.007 %/mA를 얻었다.

This paper presents a design of the CMOS LDO regulator with a fast transient response for a high speed PMIC(power management integrated circuit). Proposed LDO regulator circuit consists of a reference voltage circuit, an error amplifier and a power transistor. 2-stage wide-band OTA buffer between error amplifier and power transistor is added for a good output stability. Although conventional source follower buffer structure is simple, it has a narrow output swing and a low S/N ratio. In this paper, we use a 2-stage wide-band OTA instead of source follower structure for a buffer. From HSPICE simulation results using a $0.5{\mu}m$ CMOS standard technology, simulation results were 16 mV/V line regulation and 0.007 %/mA load regulation.

키워드

참고문헌

  1. Hoi Lee, T. Karnik, Philip K. T. Mok, Ka Nang Leung, "A design of low-power analog drivers based on slew-rate enhancement circuits for cmos low-dropout regulators," IEEE. J. Solid -State Circuit, Vol.52, No.9, pp.563-567, September, 2005.
  2. Man Siu, Philip K. T. Mok, Ka Nang Leung, Yat-Hei Lam, Wing-Hung Ki, "A voltage-mode pwm buck regulator with end-point prediction," IEEE TCAS II, vol. 53, no. 4, pp. 294-298, April 2006.
  3. P. Hazucha, T. Karnik, A. Bloechel, C. Parsons, D. Finan, S. Borkar, "Area-efficient linear regulator with ultra-fast load regulation," IEEE.J. Solid-State Circuit, Vol.40, No.4, pp. 933 -940, April, 2005. https://doi.org/10.1109/JSSC.2004.842831
  4. Kaiwei Yao, Kisun Lee, Ming Xu, and Fred C. Lee, "Optimal design of the active droop control method for the transient response," Applied Power Electronics Conference and Exposition, vol. 2, pp. 718-723, Feb. 2003.
  5. G. A. Rincon-Mora, "Active capacitor multiplier in miller-compensated circuits", IEEE J. Solid-State Circuits, 35, pp. 26-32, January, 2000. https://doi.org/10.1109/4.818917
  6. R. K. Dokania and G. A. Rincon-Mora, "Cancellation of load regulation in low drop-out regulators," Electronics Letters, vol.38, no.22, pp.1300-1302, Oct. 2002. https://doi.org/10.1049/el:20020909
  7. Chung-Wei Lin Yen-Jen Liu, "A power efficient and fast transient response low drop-out regulator in standard cmos process", VLSI Design, Automation and Test, 2006.
  8. J. Ramirez-Angulo, S. G. Ivan Padilla, R. G. Carvajal, A. Torralba, M. Jimenez, F. Munoz, Antonio Lopez-Martin, "Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities," IEEE International Midwest Symposium on Circuits and Systems, pp. 1151-1154, Aug. 2005.
  9. R. G. Carvajal, J. Ramirez-Angulo, A. J. Lopez-Martin, A. Torralba, J. A. G. Galan, A. Carlosena, F. M. Chavero, "The flipped voltage follower: a useful cell for low-voltage low-power circuit design," IEEE Trans. Circuits and Systems I, vol. 52, no. 7, pp. 1276-1291, July 2005. https://doi.org/10.1109/TCSI.2005.851387
  10. R. Tantawy, E. J. Brauer, "Performance evaluation of cmos low drop-out voltage regulators", IEEE Internatiional Midwest Symposium on Circuits and System I, vol. 1, pp.141-144, 2004.