Hydrogenation Properties on MgHx-Sc2O3 Composites by Mechanical Alloying

MgHx-Sc2O3 복합재료의 수소화 특성

  • Kim, Kyeong-Il (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devicesand Materials (ReSEM), Chungju National University) ;
  • Kim, Yong-Sung (Graduate school of NID Fusion Technology, Seoul National University of Technology) ;
  • Hong, Tae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devicesand Materials (ReSEM), Chungju National University)
  • 김경일 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 김용성 (서울산업대학교 NID융합기술대학원) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터)
  • Received : 2010.03.09
  • Accepted : 2010.04.20
  • Published : 2010.04.30

Abstract

Hydrogen energy applications have recognized clean materials and high energy carrier. Accordingly, Hydrogen energy applies for fuel cell by Mg and Mg-based materials. Mg and Mg-based materials are lightweight and low cost materials with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. Therefore one of the most methods to improve kinetics focused on addition transition metal oxide. Addition to transition metal oxide in $MgH_x$ powder produce $MgH_x$-metal oxide composition by mechanical alloy and it analyze XRD, EDS, TG/DSC, SEM, and PCT. This report considers kinetics by transition metal oxide rate and Hydrogen pressure. In this research, we can see behavior of hydriding/dehydriding profiles by addition catalyst (transition metal oxide). Results of PCI make a excellent showing $MgH_x$-5wt.% Sc2O3 at 623K, $MgH_x$-10wt.% $Sc_2O_3$ at 573K.

Keywords

References

  1. G. Barkhordarian, T. Klassen, R. Bormann, "Fast hydrogen sorption kinetics of nanocrystalline Mg using $Nb_2O_5$ as catalyst", Scripta Mater. Vol. 49, 2003, pp. 213-217. https://doi.org/10.1016/S1359-6462(03)00259-8
  2. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, A. Kvick, "Improvement in H-sorption kinetcis of $MgH_2$ powders by using Fe nanoparticles generated by reactive $FeF_3$ addition", Scripta Mater. Vol. 52, 2005, pp. 719-724. https://doi.org/10.1016/j.scriptamat.2004.12.020
  3. J. -L. Bobet, F. J. Castro, B. Chevalier, "Effects of RMG conditions on the hydrogen sorption properties of $Mg+Cr_2O_3 $mixtures", Scripta Mater. Vol. 52, 2005, pp. 33-37. https://doi.org/10.1016/j.scriptamat.2004.09.001
  4. J. -L. Bobet, B. Chevalier, M. Y. Song, B. Darriet, "Improvements of hydrogen storage properties of Mg-based mixtures elaborated by reactive mechanical milling", J. Alloys Compd. Vol. 356-357, 2003, pp. 570-574. https://doi.org/10.1016/S0925-8388(02)01279-3
  5. M. Y. Song, I. H. Kwon, J. -S. Bae, "Development of hydrogen-storage alloys of $Mg-Fe_2O_3$ system by reactive mechanical grinding", Int. J. Hydrogen Energy, Vol. 30, 2005, pp. 1107-1111. https://doi.org/10.1016/j.ijhydene.2004.10.019
  6. J. Hout, J. F. Pelletier, L. B. Lurio, M. Sutton, R. Schulz, "Investigation of dehydrogenation mechanism of $MgH_2$-Nb nanocomposites", J. Alloys Compd., Vol. 348, 2003, pp. 319-324. https://doi.org/10.1016/S0925-8388(02)00839-3
  7. Seok-Song, Kyeong-Won Cho, Tae-Whan Hong, "The evaluation of hdyrogenation properties on MgHx-$Fe_2O_3$ composite by mechanical alloying", Trans. of the Hydrogen and New Energy Society, Vol. 18, 2007, pp. 26-31.
  8. W. Oelerich, T. Klassen, R. Bormann, "Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials", J. Alloys Compd., Vol. 315, 2001, pp. 237-242. https://doi.org/10.1016/S0925-8388(00)01284-6
  9. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, H. K. Liu, "Effects of iron oxide ($Fe_2O_3$, $Fe_3O_4$) on hydrogen storage properties of Mg-based composites", J. Alloys Compd., Vol. 422, 2006, pp. 299-304. https://doi.org/10.1016/j.jallcom.2005.11.074
  10. A. M. Fernandez Samuel, Meera Rao, O. N. Srivastava, "The structural behavior and physical properties of some $MX_2$($Cdl_2$ type) layered crystals", Progress in Crystal Growth and Characterization, Vol. 7, 1983, pp. 391-450. https://doi.org/10.1016/0146-3535(83)90038-2
  11. M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, "Hydrogen storage in magnesium-based hydrides and hydride composites", Scripta Materialia, Vol. 56, 2007, pp. 841-846. https://doi.org/10.1016/j.scriptamat.2007.01.003
  12. S. Orimo, H. Fujii, "Hydriding propeties of the Mg2Ni-H system syntehsized by reactive mechanical grinding", J. Alloys Compd, Vol. 232, 1996,pp. L16-L19. https://doi.org/10.1016/0925-8388(95)02079-9
  13. Marek Polanski, Jerzy Bystrzycki, Tomasz Plocinski, "The effect of milling conditions on microstructure and hdyrogen absorption/desorption properties of magnesium hydride ($MgH_2$) without and with $Cr_2O_3 $nanoparticles", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 1859-1867. https://doi.org/10.1016/j.ijhydene.2008.01.043
  14. D. J. Davidson, S. S. Sai Raman, M. V. Lototsky, O. N. Srivastava, "On the computer simulation of the P-C isotherms of $ZrFe_2$ type hydrogen storage materials", Int. J. Hydrogen Energy, Vol. 28, 2003, pp. 1425-1431. https://doi.org/10.1016/S0360-3199(02)00194-5
  15. LO. M. Das, "Hydrogen engines: A view of the past and a look into the future", Int. J. Hydrogen Energy, Vol. 15, 1990, pp. 425-443. https://doi.org/10.1016/0360-3199(90)90200-I