DOI QR코드

DOI QR Code

생체흡착, 탈착 및 회화를 이용한 시안 용액으로부터 금의 회수

Gold Recovery from Cyanide Solution through Biosorption, Desorption and Incineration with Waste Biomass of Corynebacterium glutamicum as Biosorbent

  • 배민아 (전북대학교 반도체.화학공학부) ;
  • 곽인섭 (전북대학교 BIN융합공학과) ;
  • 원성욱 (전북대학교 반도체.화학공학부) ;
  • 윤영상 (전북대학교 반도체.화학공학부)
  • Bae, Min-A (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Kwak, In-Seob (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Won, Sung-Wook (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Yun, Yeoung-Sang (School of Semiconductor and Chemical Engineering, Chonbuk National University)
  • 투고 : 2010.03.06
  • 심사 : 2010.06.01
  • 발행 : 2010.06.30

초록

본 연구에서는 Au(I) 이온을 함유한 시안 용액으로부터 다른 형태의 금을 회수하기 위하여 생체흡착 후 탈착하는 방법과 생체흡착 후 회화하는 방법을 제안하였다. 생체흡착제로는 아미노산 발효 공정에서 발생하는 균체 폐기물(Corynebacterium glutamicum)을 사용하였다. 바이오매스의 흡착 특성을 알아 보기 위하여 pH edge 실험을 수행하였으며, 그 결과 흡착성능은 pH 2-3 부근에서 우수한 결과를 보였다. 또한, 등온흡착 실험 결과를 Langmuir 모델에 적용한 결과 Au(I)의 최대 흡착량은 pH 2.5에서 35.15 mg/g이었다. 흡착 속도론 실험을 통해 흡착 평형은 60분 이내의 짧은 시간 내에 이루어지는 것을 확인하였다. Au(I)을 회수하기 위하여 바이오매스에 흡착된 Au(I)을 탈이온수를 이용하여 탈착을 시켰으며, 탈착효율은 91%로 평가되었다. 이 결과는 바이오매스를 이용하여 흡착과 탈착을 통해 1가 금을 효과적으로 회수할 수 있음을 보여준다. 영가 형태로 회수하기 위하여, 금을 흡착하고 있는 생체흡착제를 회화하여 환원된 형태의 금을 성공적으로 회수하였으며, 회분 중 금의 순도는 85% 이상이었다. 따라서 본 연구에서 제시한 생체흡착 후 탈착(1가 형태) 공정과 생체흡착 후 회화(영가 형태) 공정은 회수하고자 하는 금의 산화수에 따라 선택하여 사용될 수 있을 것으로 기대된다.

In this study, we propose two methods able to recover different type of gold from gold-cyanide solutions: biosorption and desorption process for mono-valent gold recovery and biosorption and incineration process for zero-valent gold recovery. The waste bacterial biomass of Corynebacterium glutamicum generated from amino acid fermentation industry was used as a biosorbent. The pH edge experiments indicated that the optimal pH range was pH 2 - 3. From isothermal experiment and its fitting with Langmuir equation, the maximum uptake capacity of Au(I) at pH 2.5 were determined to be 35.15 mg/g. Kinetic tests evidenced that the process is very fast so that biosorption equilibrium was completed within the 60 min. To recover Au(I), the gold ions were able to be successfully eluted from the Au-loaded biosorbent by changing the pH to pH 7 and the desorption efficiency was 91%. This indicates that the combined process of biosorption and desorption would be effective for the recovery of Au(I). In order to recover zero-valent gold, the Au-loaded biosorbents were incinerated. The content of zero-valent gold in the incineration ash was as high as 85%. Therefore, we claim on the basis of the results that two suggested combined processes could be useful to recover gold from cyanide solutions and chosen according to the type of gold to be recovered.

키워드

참고문헌

  1. Mati, K., Rahmouni, C., Bianchi, D., and Gaillard, F., "Perfonnances and .Deactivation of Supported Precious Metal Catalysts in the Oxidation of an Engine Oil Vapour," Catal. Lett., 131(1-2), 170-178 (2009). https://doi.org/10.1007/s10562-009-0023-y
  2. Yap, C. Y., and Mohamed, N., "An Electrogenerative Process for the Recovery of Gold from Cyanide Solutions," Chemosphere, 67(8), 1502-1510 (2007). https://doi.org/10.1016/j.chemosphere.2006.12.017
  3. Cui, J., and Zhang, L., "Metallurgical Recovery of Metals from Electronic Waste: A Review," J. Hazard. Mater., 158(2-3), 228-256 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.001
  4. Fleming, C. A., "Hydrometallurgy of Precious Metals Recovery," Hydrometallurgy, 30(1-3), 127-162 (1992). https://doi.org/10.1016/0304-386X(92)90081-A
  5. Yun, Y.-S., and Volesky, B., "Modeling of Lithium ion interference in Cadmium Biosorption," Environ. Sci. Technol., 37(16), 3601-3608 (2003). https://doi.org/10.1021/es011454e
  6. Park, D., Yun, Y.-S., Park, J. M., and Volesky, B., "Chromium Biosorption by Thermally Treated Biomass of the Brown Seaweed, Ecklonia sp.," Ind. Eng. Chem. Res., 43(26), 8226-8232 (2004). https://doi.org/10.1021/ie049323k
  7. Yun, Y.-S., "Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions," J. Microbiol. Biotechnol., 14(1), 29-34 (2004).
  8. Pakshirajan, K., and Swaminathan, T., "Biosorption of Lead, Copper, and Cadmium by Phanerochaete chrysosporium in Ternary Metal Mixtures: Statistical Analysis of Individual and Interaction Effects," Appl. Biochem. Biotechnol., 158(2), 457-469 (2009). https://doi.org/10.1007/s12010-008-8374-1
  9. Wang, J., and Chen, C., "Biosorption of Heavy Metals by Saccharomyces cerevisiae: A Review," Biotechnol. Adv., 24(5), 427-451 (2006). https://doi.org/10.1016/j.biotechadv.2006.03.001
  10. Sakaguchi, T., Nakajima, A., and Horikoshi, T., "Studies on the Accumulation of Heavy Metal Elements in Biologicai Systems: Accumulation of Molybdenum by Green Microalgae," Eur. J. Appl. Microbiol. Biotechnol., 12(2), 84-89 (1981). https://doi.org/10.1007/BF01970039
  11. Ting, Y. P., Teo, W. K., and Soh, C. Y., "Gold Uptake by Chlorella vulgaris," J. Appl. Phycol., 7(1), 97-100 (1995). https://doi.org/10.1007/BF00003557
  12. Can, C., and Jianlong, W., "Removal of Heavy Metal Ions by Waste Biomass of Saccharomyces cerevisiae," J. Envir. Engrg., 136(1), 95-102 (2010). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000128
  13. Puranik, P. R., and Paknikar, K. M., "Biosorption of Lead and Zinc from Solutions using Streptoverticillium cinnamoneum Waste Biomass," J. Biotechnol., 55(2), 113-124 (1997). https://doi.org/10.1016/S0168-1656(97)00067-9
  14. Gadd, G. M., "Fungi and Yeasts for Metal Accumulation. In: Ehrlich, H. L. and Brierley, C. L. (Eds.) ," Microbial Mineral Recovery, McGraw-Hill, New York:, pp. 249-275 (1990).
  15. Azizian, S., "Kinetic Models of Sorption: a Theoretical Analysis," J. Colloid Interf. Sci., 276(1), 47-52 (2004). https://doi.org/10.1016/j.jcis.2004.03.048
  16. McKay, G., and AI-Duri, B., "Simplified Model for the Equilibrium Adsorption of Dyes from Mixtures Using Activated Carbon," Chem. Eng. Prog., 22(3), 145-56 (1987). https://doi.org/10.1016/0255-2701(87)80041-7
  17. Vijayaraghavan, K., and Yun, Y.-S., "Bacterial Biosorbent and Biosorption," Biotechnol. Adv., 26(3), 266-291 (2008). https://doi.org/10.1016/j.biotechadv.2008.02.002
  18. Crist, R. H., Oberholser, K., Shank, N., and Nguyen, M., "Nature of Bonding Between Metallic Ions and Algal Cell Walls," Environ. Sci. Technol., 15(10), 1212-1217 (1981). https://doi.org/10.1021/es00092a010
  19. Jeon, C., Park, J. Y., and Yoo, Y. J., "Biosorption Model for Binary Adsorption Sites," J. Microbiol. Biotechnol., 11(5), 781-787 (2001).
  20. Fourest, E., and Volesky, B., "Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans," Environ. Sci. Technol., 30(1), 277-282 (1995).
  21. Won, S. W., Choi, S. B., Chung, B. W., Park, D., Park, J, M., and Yun, Y.-S., "Biosorptive Decolorization of Reactive Orange 16 using Waste Biomass of Corynebacterium glutamicum," Ind. Eng. Chem. Res., 43(24), 7865-7869 (2004). https://doi.org/10.1021/ie049559o
  22. Fu, Y., and Viraraghavan, T., "Dye Biosorption Sites in Aspergillus niger," Bioresour. Technol., 82(2), 139-145 (2002). https://doi.org/10.1016/S0960-8524(01)00172-9
  23. Ishikawa, S., Suyama, K., Arihara, K., and Itoh, M., "Uptake and Recovery of Gold Ions from Electroplating Wastes Using Eggshell Membrane," Bioresour. Technol., 81(3), 201-206 (2002). https://doi.org/10.1016/S0960-8524(01)00134-1
  24. Limousin, G., Gaudet, J. P., Chariet, L., Szenknect, S., Barth, V., and Krimissa, M., "Sorption Isotherms: a Review on Physical Bases, Modeling and Measurement," Appl. Geochem., 22(2), 249-275 (2007). https://doi.org/10.1016/j.apgeochem.2006.09.010