DOI QR코드

DOI QR Code

Spatial and Temporal Distribution of a Biocontrol Bacterium Bacillus licheniformis N1 on the Strawberry Plants

  • Received : 2010.07.26
  • Accepted : 2010.08.21
  • Published : 2010.09.01

Abstract

Spatial and temporal distribution of Bacillus licheniformis N1 was investigated over time on the leaves, petioles and crowns of the strawberry plants. Bacterial population on the strawberry plants was quantified over time by selective plating. Bacterial population of N1 containing a plasmid pWH43G carrying green fluorescent protein (GFP) declined relatively faster on the plant surface as compared to the Strain N1 itself. However, this result was found to be enough to utilize the strain to visualize bacterial colonization on the plant surface. When B. licheniformis N1 was treated together with Silwet L-77 at 0.03%, the bacterial population on plant surface persisted for up to 7 days. B. licheniformis N1 (pWH43G) containing Silwet L-77 was applied on the strawberry plants and the GFP expressing bacteria were visualized by confocal laser scanning microscopy. Bacterial persistence was also investigated in a growth chamber and in a plastic house after N1 bioformulation treatment on the strawberry plant. The Strain N1 colonized three different tissues well and persisted over 3 to 5 days on the strawberry plants. They formed bacterial aggregates on plant surfaces for at least 3 days, resulting in a biofilm to resist fluctuating plant surface environment. However, the bacterial persistence dramatically declined after 7 days in all tested tissues in a plastic house. This study suggest that B. licheniformis N1 colonizes the strawberry plant surface and persists for a long time in a controlled growth chamber, while it can not persist over 7 days on the plant surface in a plastic house.

Keywords

References

  1. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudo monas syrignge is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  2. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 98:11621-11626. https://doi.org/10.1073/pnas.191384198
  3. Braun, P. G. and J. C. Sutton. 1988. Infection cycles and population dynamics of Botrytis cinerea in strawberry leaves. Can. J. Plant Pathol. 10:133-141. https://doi.org/10.1080/07060668809501745
  4. Collins, D. P., Jacobsen, B. J. and Maxwell, B. 2003. Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biol. Control. 26:224-232. https://doi.org/10.1016/S1049-9644(02)00146-9
  5. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  6. Daniels, R., Vanderleyden, J. and Michiels, J. 2004. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28:261-289. https://doi.org/10.1016/j.femsre.2003.09.004
  7. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  9. Fravel, D. R., Connick. Jr. W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of Microbial Pesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed by H. D. Burges. pp 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  10. Gent, D. H., Schwartz, H. F. and Nissen, S. J. 2003. Effect of commercial adjuvants on vegetable crop fungicide coverage, absorption, and efficacy. Plant Dis. 87:591-597. https://doi.org/10.1094/PDIS.2003.87.5.591
  11. Howard, C. M., Maas, J. L., Chandler, C. K. and Albregts, E. E. 1992. Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Dis. 76:976-981. https://doi.org/10.1094/PD-76-0976
  12. Jeger, M. J., Jeffries, P., Elad, Y. and Xu, X.-M. 2009. A generic theoretical model for biological control of foliar plant diseases. J. Theor. Biol. 256:201-214. https://doi.org/10.1016/j.jtbi.2008.09.036
  13. Jetiyanon, K. 1994. Immunization of cabbage for long-term resistance to black rot. M.S. thesis. Auburn University, Auburn, USA.
  14. Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. K., Kim, D. W., Lee, S-W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
  15. Kinsinger, R. F., Shirk, M. C. and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627-5631. https://doi.org/10.1128/JB.185.18.5627-5631.2003
  16. Kong, H. G., Kim, J-C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S-W. 2010. Production of surfactin and itruin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170-177. https://doi.org/10.5423/PPJ.2010.26.2.170
  17. Kong, H. G., Choi, K. H., Heo, K. R., Lee, K. Y., Lee, H. J., Moon, B. J. and Lee, S-W. 2009. Generation of a constitutive green fluorescent protein expression construct to mark biocontrol bacterial using P43 promoter from Bacillus subtilis. Plant Pathol. J. 25:136-141. https://doi.org/10.5423/PPJ.2009.25.2.136
  18. Leclere, V., Marti, R., Bechet, M., Fickers, P. and Jacques, P. 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch. Microbiol. 186: 475-483. https://doi.org/10.1007/s00203-006-0163-z
  19. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  20. Lee, J. P., Lee, S-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control. 37:329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  21. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  22. Maas, J. L. 1984. Compendium of Strawberry Diseases. American Phytopathological Society, St. Paul, MN.
  23. Mathre, D. E., Cook, R. J. and Callan, N. W. 1999. From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis. 83:972-983. https://doi.org/10.1094/PDIS.1999.83.11.972
  24. Melinick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M. and Backman, P. A. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol. Control. 46:46-56. https://doi.org/10.1016/j.biocontrol.2008.01.022
  25. Nam, M. H., Kim, H. S., Lee, W. K., Seong, Y. K., Gleason, M. L., Song, J. Y. and Kim, H. G. 2008. Application of an IPMbased spray program to protected cultivation of strawberry in Korea. Hort. Environ. Biotechnol. 49:352-356.
  26. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease control. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  27. Ramey, B. E., Koutsoudis, M., von Bodman, S. B. and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7:602-609. https://doi.org/10.1016/j.mib.2004.10.014
  28. Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  29. Xue, G. P., Johnson, J. S. and Dalrymple, B. P. 1999. High osmolarity improve the electro-transformation efficiency of the gram-positive Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Meth. 34:183-191. https://doi.org/10.1016/S0167-7012(98)00087-6

Cited by

  1. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
  2. Spatial scales of interactions among bacteria and between bacteria and the leaf surface vol.91, pp.3, 2015, https://doi.org/10.1093/femsec/fiu034