DOI QR코드

DOI QR Code

An evolving integrative physiology: skeleton and energy metabolism

  • Lee, Na-Kyung (Department of Biomedical Laboratory Science, College of Medical Science, Soonchunhyang University)
  • Received : 2010.07.14
  • Published : 2010.09.30

Abstract

The adipocyte-derived hormone leptin regulates appetite and bone mass. Recent research demonstrates that reciprocally, osteoblasts have a role in controlling energy metabolism. Several genes expressed in osteoblasts are involved in this process, and one of them is the Esp gene. The remaining genes regulate Esp gene expression. OST-PTP, the protein name of Esp, regulates the carboxylation of osteocalcin secreted from osteoblasts, thus affecting insulin sensitivity and insulin secretion. This review provides evidence for a novel interpretation of the connection between bone and energy metabolism and expands our understanding of the novel physiology of bone beyond its classical functions.

Keywords

References

  1. Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
  2. Harada, S. and Rodan, G. A. (2003) Control of osteoblast function and regulation of bone mass. Nature 423, 349-355. https://doi.org/10.1038/nature01660
  3. Raisz, L. G. (2005) Clinical practice. Screening for osteoporosis. N. Engl. J. Med. 353, 164-171. https://doi.org/10.1056/NEJMcp042092
  4. Riggs, B. L., Khosla, S. and Melton, L. J. 3rd. (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13, 763-773. https://doi.org/10.1359/jbmr.1998.13.5.763
  5. Ricci, T. A., Heymsfield, S. B., Pierson, R. N. Jr., Stahl, T., Chowdhury, H. A. and Shapses, S. A. (2001) Moderate energy restriction increases bone resorption in obese postmenopausal women. Am. J. Clin. Nutr. 73, 347-352. https://doi.org/10.1093/ajcn/73.2.347
  6. Grinspoon, S., Thomas, E., Pitts, S., Gross, E., Mickley, D., Miller, K., Herzog, D. and Klibanski, A. (2000) Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133, 790-794. https://doi.org/10.7326/0003-4819-133-10-200011210-00011
  7. Karsenty, G. (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4, 341-348. https://doi.org/10.1016/j.cmet.2006.10.008
  8. Felson, D. T., Zhang, Y., Hannan, M. T. and Anderson, J. J. (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Miner. Res. 8, 567-573. https://doi.org/10.1002/jbmr.5650080507
  9. Tremollieres, F. A., Pouilles, J. M. and Ribot, C. (1993) Vertebral postmenopausal bone loss is reduced in overweight women: a longitudinal study in 155 earlypostmenopausal women. J. Clin. Endocrinol. Metab. 77, 683-686. https://doi.org/10.1210/jc.77.3.683
  10. Ahima, R. S. (2004) Body fat, leptin, and hypothalamic amenorrhea. N. Engl. J. Med. 351, 959-962. https://doi.org/10.1056/NEJMp048214
  11. Spiegelman, B. M., and Flier, J. S. (2001) Obesity and the regulation of energy balance. Cell 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  12. Auwerx, J. and Staels, B. (1998) Leptin. Lancet 351, 737-742. https://doi.org/10.1016/S0140-6736(97)06348-4
  13. Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A. F., Beil, F. T., Shen, J., Vinson, C., Rueger, J. M. and Karsenty, G. (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197-207. https://doi.org/10.1016/S0092-8674(00)81558-5
  14. Ahima, R. S., Saper, C. B., Flier, J. S. and Elmquist, J. K. (2000) Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol. 21, 263-307. https://doi.org/10.1006/frne.2000.0197
  15. Elefteriou, F., Ahn, J. D., Takeda, S., Starbuck, M., Yang, X., Liu, X., Kondo, H., Richards, W. G., Bannon, T. W., Noda, M., Clement, K., Vaisse, C. and Karsenty, G. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514-520. https://doi.org/10.1038/nature03398
  16. Martin, A., de Vittoris, R., David, V., Moraes, R., Begeot, M., Lafage-Proust, M. H., Alexandre, C., Vico, L. and Thomas, T. (2005) Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146, 3652-3659. https://doi.org/10.1210/en.2004-1509
  17. Cornish, J., Callon, K. E., Bava, U., Lin, C., Naot, D., Hill, B. L., Grey, A. B., Broom, N., Myers, D. E., Nicholson, G. C. and Reid, I. R. (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175, 405-415. https://doi.org/10.1677/joe.0.1750405
  18. Elefteriou, F., Takeda, S., Ebihara, K., Magre, J., Patano, N., Kim, C. A., Ogawa, Y., Liu, X., Ware, S. M., Craigen, W. J., Robert, J. J., Vinson, C., Nakao, K., Capeau, J. and Karsenty, G. (2004) Serum leptin level is a regulator of bone mass. Proc. Natl. Acad. Sci. U.S.A. 101, 3258-3263. https://doi.org/10.1073/pnas.0308744101
  19. Lian, J., Stewart, C., Puchacz, E., Mackowiak, S., Shalhoub, V., Collart, D., Zambetti, G. and Stein, G. (1989) Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc. Natl. Acad. Sci. U.S.A. 86, 1143-1147. https://doi.org/10.1073/pnas.86.4.1143
  20. Hauschka, P. V., Lian, J. B., Cole, D. E. and Gundberg, C. M. (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990-1047. https://doi.org/10.1152/physrev.1989.69.3.990
  21. Price, P. A. (1989) Gla-containing proteins of bone. Connect. Tissue. Res. 21, 51-57. https://doi.org/10.3109/03008208909049995
  22. Hetzel, P. G., Glanzmann, R., Hasler, P. W., Ladewick, A. and Buhrer, C. (2006) Coumarin embryopathy in an extremely low birth weight infant associated with neonatal hepatitis and ocular malformations. Eur. J. Pediatr. 165, 358-360. https://doi.org/10.1007/s00431-005-0064-1
  23. Obrant, K. J., Kakonen, S. M., Astermark, J., Lilja, H., Lovgren, T., Akesson, K. and Pettersson, K. (1999) The proportion of carboxylated to total or intact osteocalcin in serum discriminates warfarin-treated patients from control subjects. J. Bone. Miner. Res. 14, 555-560. https://doi.org/10.1359/jbmr.1999.14.4.555
  24. Sayinalp, S., Gedik, O. and Koray, Z. (1995) Increasing serum osteocalcin after glycemic control in diabetic men. Calcif. Tissue Int. 57, 422-425. https://doi.org/10.1007/BF00301944
  25. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., Confavreux, C., Dacquin, R., Mee, P. J., McKee, M. D., Jung, D. Y., Zhang, Z., Kim, J. K,. Mauvais-Jarvis, F., Ducy, P. and Karsenty, G. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456-469. https://doi.org/10.1016/j.cell.2007.05.047
  26. Mauro, L. J., Olmsted, E. A., Skrobacz, B. M., Mourey, R. J., Davis, A. R. and Dixon, J. E. (1994) Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J. Biol. Chem. 269, 30659-30667.
  27. Dacquin, R., Mee, P. J., Kawaguchi, J., Olmsted-Davis, E. A., Gallagher, J. A., Nichols, J., Lee, K., Karsenty, G. and Smith, A. (2004) Knock-in of nuclear localised betagalactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar. Dev. Dyn. 229, 826-834. https://doi.org/10.1002/dvdy.20003
  28. Ferron, M., Wei, J., Yoshizawa, T., Ducy, P. and Karsenty, G. (2010) An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem. Biophys. Res. Commun. [Epub ahead of print].
  29. Ferron, M., Hinoi, E., Karsenty, G. and Ducy, P. (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. U.S.A. 105, 5266-5270. https://doi.org/10.1073/pnas.0711119105
  30. Yoshizawa, T., Hinoi, E., Jung, D. Y., Kajimura, D., Ferron, M., Seo, J., Graff, J. M., Kim, J. K. and Karsenty, G. (2009) The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J. Clin. Invest. 119, 2807-2817. https://doi.org/10.1172/JCI39366
  31. Rached, M. T., Kode, A., Silva, B. C., Jung, D. Y., Gray, S., Ong, H., Paik, J. H., DePinho, R. A., Kim, J. K., Karsenty, G. and Kousteni, S. (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 120, 357-368. https://doi.org/10.1172/JCI39901
  32. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T. M., Hanauer, A. and Karsenty, G. (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117, 387-398. https://doi.org/10.1016/S0092-8674(04)00344-7
  33. Accili, D. and Arden, K. C. (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426. https://doi.org/10.1016/S0092-8674(04)00452-0
  34. Nakae, J., Biggs, W. H. 3rd, Kitamura, T., Cavenee, W. K., Wright, C. V., Arden, K. C. and Accili, D. (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32, 245-253. https://doi.org/10.1038/ng890
  35. Matsumoto, M., Pocai, A., Rossetti, L., DePinho, R. A. and Accili, D. (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208-216. https://doi.org/10.1016/j.cmet.2007.08.006
  36. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H. 3rd, Arden, K. C. and Accili, D. (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell. 4, 119-129. https://doi.org/10.1016/S1534-5807(02)00401-X
  37. Rached, M. T., Kode, A., Silva, B. C., Jung, D. Y., Gray, S., Ong, H., Paik, J. H., DePinho, R. A., Kim, J. K., Karsenty, G. and Kousteni, S. (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 120, 357-368. https://doi.org/10.1172/JCI39901
  38. Hinoi, E., Gao, N., Jung, D. Y., Yadav, V., Yoshizawa, T., Myers, M. G. Jr., Chua, S. C. Jr., Kim, J. K., Kaestner, K. H. and Karsenty, G. (2008) The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 183, 1235-1242. https://doi.org/10.1083/jcb.200809113
  39. Morioka, T., Asilmaz, E., Hu, J. Dishinger, J. F., Kurpad, A. J., Elias, C. F., Li, H., Elmquist, J. K., Kennedy, R. T. and Kulkarni, R. N. (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J. Clin. Invest. 117, 2860-2868. https://doi.org/10.1172/JCI30910
  40. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., Armstrong, D., Ducy, P. and Karsenty, G. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317. https://doi.org/10.1016/S0092-8674(02)01049-8
  41. Hinoi, E., Gao, N., Jung, D. Y., Yadav, V., Yoshizawa, T., Kajimura, D., Myers, M. G. Jr., Chua, S. C. Jr., Wang, Q., Kim, J. K., Kaestner, K. H. and Karsenty, G. (2009) An Osteoblast-dependent mechanism contributes to the leptin regulation of insulin secretion. Ann. N. Y. Acad. Sci. 1173, E20-30. https://doi.org/10.1111/j.1749-6632.2009.05061.x
  42. Hwang, Y. C., Jeong, I. K., Ahn, K. J. and Chung, H. Y. (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab. Res. Rev. 25, 768-772. https://doi.org/10.1002/dmrr.1045
  43. Winhofer, Y., Handisurya, A., Tura, A., Bittighofer, C., Klein, K., Schneider, B., Bieglmayer, C., Wagner, O. F., Pacini, G., Luger, A. and Kautzky-Willer, A. (2010) Osteocalcin is related to enhanced insulin secretion in gestational diabetes mellitus. Diabetes Care 33, 139-143. https://doi.org/10.2337/dc09-1237
  44. Pittas, A. G., Harris, S. S., Eliades, M., Stark, P. and Dawson-Hughes, B. (2009) Association between serum osteocalcin and markers of metabolic phenotype. J. Clin. Endocrinol. Metab. 94, 827-832. https://doi.org/10.1210/jc.2008-1422

Cited by

  1. Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein vol.33, pp.1, 2013, https://doi.org/10.1016/j.nutres.2012.11.011
  2. Osteocalcin is a predictor for diabetes mellitus in postmenopausal women and correlated with oral intake of vitamin k vol.8, pp.3, 2015, https://doi.org/10.3233/MNM-150049
  3. Evolution of Leptin Structure and Function vol.94, pp.1, 2011, https://doi.org/10.1159/000328435
  4. The systemic nature of CKD vol.13, pp.6, 2017, https://doi.org/10.1038/nrneph.2017.52