DOI QR코드

DOI QR Code

Propamidine decreas mitochondrial complex III activity of Botrytis cinerea

  • Wu, Fangli (Center of Biopesticide Engineering and Technology, Northwest A & F University) ;
  • Jin, Weibo (The College of Life Sciences, Northwest A&F University) ;
  • Feng, Juntao (Center of Biopesticide Engineering and Technology, Northwest A & F University) ;
  • Chen, Anliang (Center of Biopesticide Engineering and Technology, Northwest A & F University) ;
  • Ma, Zhiqing (Center of Biopesticide Engineering and Technology, Northwest A & F University) ;
  • Zhang, Xing (Center of Biopesticide Engineering and Technology, Northwest A & F University)
  • Received : 2010.02.01
  • Accepted : 2010.07.24
  • Published : 2010.09.30

Abstract

Propamidine, an aromatic diamidine compound, is widely used as an antimicrobial agent. To uncover its mechanism on pathogenetic fungi, Botrytis cinerea as an object was used to investigate effects of propamidine in this paper. The transmission electron microscope results showed that the mitochondrial membranes were collapsed after propamidine treatment, followed that mitochondria were disrupted. Inhibition of whole-cell and mitochondrial respiration by propamidine suggested that Propamidine is most likely an inhibitor of electron transport within Botrytis cinerea mitochondria. Furthermore, the mitochondrial complex III activity were inhibited by propamidine.

Keywords

References

  1. De Souza, E. M., Menna-Barreto, R., Araujo-Jorge, T. C., Kumar, A., Hu, Q., Boykin, D. W. and Soeiro, M. N. C. (2006) Antiparasitic activity of aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitology 133, 75-79. https://doi.org/10.1017/S0031182006000084
  2. Bailly, C., Perrine, D., Lancelot, J. C., Saturnino, C., Robba, M. and Waring, M. J. (1997) Sequence-selective binding to DNA of bis (amidinophenoxy) alkanes related to propamidine and pentamidine. Biochem. J. 323, 23-31. https://doi.org/10.1042/bj3230023
  3. Tabernero, L., Bella, J. and Aleman, C. (1996) Hydrogen bond geometry in DNA-minor groove binding drug complexes. Nucleic. Acids Res. 24, 3458-3466. https://doi.org/10.1093/nar/24.17.3458
  4. Nguyen, B., Lee, M. P. H., Iberg, D. H., Joubert, A., Bailly, C., Brun, R., Neidle, S. and Wilson, W. D. (2002) Strong binding in the DNA minor groove by an aromatic diamidine with a shape that does not match the curvature of the groove. JACS. 124, 13680-13681. https://doi.org/10.1021/ja027953c
  5. Lansiaux, A., Tanious, F., Mishal, Z., Dassonneville, L., Kumar, A., Stephens, C. E., Hu, Q., Wilson, W. D., Boykin, D. W. and Bailly, C. (2002) Distribution of furamidine analogues in tumor cells: targeting of the nucleus or mitochondria depending on the amidine substitution. Cancer Res. 62, 7219-7229.
  6. Miletti, K. E. and Leibowitz, M. J. (2000) Pentamidine inhibition of group I intron splicing in Candida albicans correlates with growth inhibition. Antimicrob. Agents Chemother. 44, 958-966. https://doi.org/10.1128/AAC.44.4.958-966.2000
  7. Zhang, Y., Li, Z. J., Pilch, D. S. and Leibowitz. M. J. (2002) Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Nucleic. Acids Res. 30, 2961-2971. https://doi.org/10.1093/nar/gkf394
  8. Bielawski, K., Galicka, A., Bielawska, A. and Sredzinska, K. (2000) Inhibitory effects of pentamidine analogues on protein biosynthesis in vitro. Acta. Biochimica. Polonica. 47, 113-120.
  9. Lanteri, C. A., Trumpower, B. L., Tidwell, R. R. and Meshnick, S. R. (2004) DB75, a novel trypanocidal agent, disrupts mitochondrial function in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 48, 3968-3974. https://doi.org/10.1128/AAC.48.10.3968-3974.2004
  10. Werbovetz, K. (2006) Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Curr. Opin. Investig. Drugs 7, 147-157.
  11. Mathis, A. M., Holman, J. L., Sturk, L. M., Ismail, M. A., Boykin, D. W., Tidwell, R. R. and Hall, J. E. (2006) Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob. Agents Chemother. 50, 2185-2191. https://doi.org/10.1128/AAC.00192-06
  12. Montgomery, A. B., Debs, R. J., Luce, J. M., Corkery, K. J., Turner, J., Brunette, E. N., Lin, E. T. and Hopewell, P. C. (1987) Aerosolised pentamidine as sole therapy for Pneumocystis carinii pneumonia in patients with acquired immunodeficiency syndrome. Lancet II 2, 480-483.
  13. Lanteri, C. A., Stewart, M. L., Brock, J. M., Alibu, V. P., Meshnick, S. R., Tidwell, R. R. and Barrett, M. P. (2006) Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Mol. Pharmacol. 70, 1585-1592. https://doi.org/10.1124/mol.106.024653
  14. Lourie, E. M. and Yorke, W. (1939) The trypanocidal action of certain aromatic diamidines. Ann. Trop. Med. Para. 33, 289-304. https://doi.org/10.1080/00034983.1939.11685073
  15. Elson., W. O. (1945) The antibacterial and fungistatic properties of propamidine. J. Infect. Dis. 76, 193-197. https://doi.org/10.1093/infdis/76.3.193
  16. Chen, A. L., He, J., Lian, Y. J., Feng, J. T. and Zhang, X. (2006) The fungicide activity of analogs of pentamidine against Botrytis cinerea. J. Plant Protection 33, 68-72.
  17. Wu, W. J. (1987) Experiment technology of plant chemical protection. Shaanxi Science and Technology Press, Xi’an, China.
  18. Walzer, P. D., Kim, C. K., Foy, J., Linke, M. J. and Cushion, M. T. (1988) Cationic antitrypanosomal and other antimicrobial agents in the therapy of experimental Pneumocystis carinii pneumonia. Antimicrob. Agents Chemother. 32, 896-905. https://doi.org/10.1128/AAC.32.6.896
  19. Gazzard, B. G. (1989) Pneumocystis carinii pneumonia and its treatment in patients with AIDS. J. Antimicrob. Chemother. 23, 67-75. https://doi.org/10.1093/jac/23.suppl_A.67
  20. Wispelwey, B. and Pearson, R. D. (1991) Pentamidine: a review, In-fect. Infect. Control Hosp. Epidemiol. 12, 375-381. https://doi.org/10.1086/646360
  21. Varga, J. H., Wolf, T. C., Jensen, H. G., Parmley, V. C. and Rowsey, J. J. (1993) Combined treatment of Acanthamoeba keratitis with propamidine, neomycin, and polyhexamethylene biguanide. Am. J. Ophthalmol. 115, 466-470. https://doi.org/10.1016/S0002-9394(14)74448-4
  22. Perrine, D., Chenu, J. P., Georges, P., Lancelot, J. C., Saturnino, C. and Robba. M. (1995) Effect of zidovudine on transplacental pharmacokinetics of ddI in the pigtailed macaque (Macaca nemestrina). Antimicrob. Agents Chemother. 39, 339-342. https://doi.org/10.1128/AAC.39.2.339
  23. Chen, A. L., He, J., Lian, Y. J., Feng, J. T. and Zhang, X. (2006) The fungicide activity of analogs of pentamidine against Botrytis cinerea. Acta. Phytophylacica Sinica. 33, 68-72.
  24. Luck, G., Zimmer, C. and Schweizer, D. (1988) DNA binding studies of the nonintercalative ligand pentamidine: dA-dT basepair preference. Studia Biophys. 125, 107-119.
  25. Fox, K. R., Sansom, C. E. and Stevens, M. F. G. (1990) Footprinting studies on the sequence-selective binding of pentamidine to DNA. FEBS Letters 266, 150-154. https://doi.org/10.1016/0014-5793(90)81527-U
  26. Lanteri, C. A., Tidwell, R. R. and Meshnick, S. R. (2008) The mitochondrion is a site of trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of Trypanosoma brucei. Antimicrob. Agents Chemother. 52, 875-882. https://doi.org/10.1128/AAC.00642-07
  27. Kang, Z. (1996) Ultrastructure of Plant Pathogenic Fungi, Chain Science and Technology Press, Beijing.
  28. Yoneyama, K. and Misato, T. (1971) Studies on the fungicidal action of dithiocarbamates. Ann. Phytopath. Soc. Japan 37, 291-300. https://doi.org/10.3186/jjphytopath.37.291
  29. Chance, B. and Willium, G. R. (1955) Respiration enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217, 383-393.
  30. Pecci, L., Montefoschi, G., Fontana, M. and Cavallini, D. (1994) Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level. Biochem. Biophys. Res. Commun. 199, 755-760. https://doi.org/10.1006/bbrc.1994.1293
  31. Singer, T. P. (1974) Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases. Methods Biochem. Anal. 22, 123-175. https://doi.org/10.1002/9780470110423.ch3
  32. Hatefi, Y. and Stiggall, D. L. (1978) Preparation and properties of succinate: ubiquinonereductase (ComplexII). Methods Enzymol. 53, 21-27. https://doi.org/10.1016/S0076-6879(78)53008-5
  33. Krahenbuhl, S., Chang, M., Brass, E. P. and Hoppel, C. L. (1991) Decreased activities of ubiquinol: ferricytochrome c oxidoreductase (complex III) and ferrocytochromec: oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin (c-lactam)-induced methylmalonic aciduria. J. Biol. Chem. 266, 20998-21003.
  34. Boffoli, D., Scacco, S. C., Vergari, R., Solarin, G., Santacroce, G. and Papa, S. (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim. Biophys. Acta. 1226, 73-82. https://doi.org/10.1016/0925-4439(94)90061-2

Cited by

  1. Therapeutic agents and biocides for ocular infections by free-living amoebae of Acanthamoeba genus vol.62, pp.2, 2017, https://doi.org/10.1016/j.survophthal.2016.10.009
  2. Diamidine Compounds for Selective Inhibition of Protein Arginine Methyltransferase 1 vol.57, pp.6, 2014, https://doi.org/10.1021/jm401884z