DOI QR코드

DOI QR Code

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In (Department of Anatomy and BK21, Kyungpook National University School of Medicine) ;
  • Jang, Hee-Seong (Department of Anatomy and BK21, Kyungpook National University School of Medicine) ;
  • Park, Kwon-Moo (Department of Anatomy and BK21, Kyungpook National University School of Medicine)
  • Received : 2010.03.30
  • Accepted : 2010.06.30
  • Published : 2010.09.30

Abstract

Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

Keywords

References

  1. Wen, X., Murugan, R., Peng, Z. and Kellum, J. A. (2010) Pathophysiology of acute kidney injury: a new perspective. Contrib. Nephrol. 165, 39-45. https://doi.org/10.1159/000313743
  2. Park, K. M., Kim, J. I., Ahn, Y., Bonventre, A. J. and Bonventre, J. V. (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J. Biol. Chem. 279, 52282-52292. https://doi.org/10.1074/jbc.M407629200
  3. Kim, J., Jung, K. J. and Park, K. M. (2010) Reactive oxygen species differently regulate renal tubular epithelial and interstitial cell proliferation after ischemia and reperfusion injury. Am. J. Physiol. Renal. Physiol. 298, F1118-1129. https://doi.org/10.1152/ajprenal.00701.2009
  4. Meng, X., Ao, L., Brown, J. M., Fullerton, D. A., Banerjee, A. and Harken, A. H. (1997) Nitric oxide synthase is not involved in cardiac contractile dysfunction in a rat model of endotoxemia without shock. Shock 7, 111-118. https://doi.org/10.1097/00024382-199702000-00007
  5. Heemann, U., Szabo, A., Hamar, P., Muller, V., Witzke, O., Lutz, J. and Philipp, T. (2000) Lipopolysaccharide pretreatment protects from renal ischemia/reperfusion injury: possible connection to an interleukin-6-dependent pathway. Am. J. Pathol. 156, 287-293. https://doi.org/10.1016/S0002-9440(10)64729-3
  6. Wang, Y. P., Sato, C., Mizoguchi, K., Yamashita, Y., Oe, M. and Maeta, H. (2002) Lipopolysaccharide triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovasc. Res. 56, 33-42. https://doi.org/10.1016/S0008-6363(02)00506-0
  7. Zhao, L., Weber, P. A., Smith, J. R., Comerford, M. L. and Elliott, G. T. (1997) Role of inducible nitric oxide synthase in pharmacological “preconditioning” with monophosphoryl lipid A. J. Mol. Cell Cardiol. 29, 1567-1576. https://doi.org/10.1006/jmcc.1997.0390
  8. Elliott, G. T., Comerford, M. L., Smith, J. R. and Zhao, L. (1996) Myocardial ischemia/reperfusion protection using monophosphoryl lipid A is abrogated by the ATP-sensitive potassium channel blocker, glibenclamide. Cardiovasc. Res. 32, 1071-1080. https://doi.org/10.1016/S0008-6363(96)00154-X
  9. Oreopoulos, G. D., Bradwell, S., Lu, Z., Fan, J., Khadaroo, R., Marshall, J. C., Li, Y. H. and Rotstein, O. D. (2001) Synergistic induction of IL-10 by hypertonic saline solution and lipopolysaccharides in murine peritoneal macrophages. Surgery 130, 157-165. https://doi.org/10.1067/msy.2001.115829
  10. Furuya, K., Zhu, L., Kawahara, N., Abe, O. and Kirino, T. (2005) Differences in infarct evolution between lipopolysaccharide- induced tolerant and nontolerant conditions to focal cerebral ischemia. J. Neurosurg. 103, 715-723. https://doi.org/10.3171/jns.2005.103.4.0715
  11. Hiasa, G., Hamada, M., Ikeda, S. and Hiwada, K. (2001) Ischemic preconditioning and lipopolysaccharide attenuate nuclear factor-kappaB activation and gene expression of inflammatory cytokines in the ischemia-reperfused rat heart. Jpn. Circ. J. 65, 984-990. https://doi.org/10.1253/jcj.65.984
  12. Park, K. M., Chen, A. and Bonventre, J. V. (2001) Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J. Biol. Chem. 276, 11870-11876. https://doi.org/10.1074/jbc.M007518200
  13. Shames, B. D., Meldrum, D. R., Selzman, C. H., Pulido, E. J., Cain, B. S., Banerjee, A., Harken, A. H. and Meng, X. (1998) Increased levels of myocardial IkappaB-alpha protein promote tolerance to endotoxin. Am. J. Physiol. 275, H1084-1091.
  14. Park, K. M., Byun, J. Y., Kramers, C., Kim, J. I., Huang, P. L. and Bonventre, J. V. (2003) Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J. Biol. Chem. 278, 27256-27266. https://doi.org/10.1074/jbc.M301778200
  15. Elliott, G. T. (1998) Monophosphoryl lipid A induces delayed preconditioning against cardiac ischemia-reperfusion injury. J. Mol. Cell Cardiol. 30, 3-17. https://doi.org/10.1006/jmcc.1997.0586
  16. Kim, J., Jang, H. S. and Park, K. M. (2010) Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am. J. Physiol. Renal. Physiol. 298, F158-166. https://doi.org/10.1152/ajprenal.00474.2009
  17. Bonventre, J. V. (2002) Kidney ischemic preconditioning. Curr. Opin. Nephrol. Hypertens. 11, 43-48. https://doi.org/10.1097/00041552-200201000-00007
  18. Goligorsky, M. S., Brodsky, S. V. and Noiri, E. (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int. 61, 855-861. https://doi.org/10.1046/j.1523-1755.2002.00233.x
  19. Otani, H. (2009) The role of nitric oxide in myocardial repair and remodeling. Antioxid. Redox. Signal. 11, 1913-1928. https://doi.org/10.1089/ars.2009.2453
  20. Hamid, S. A., Bower, H. S. and Baxter, G. F. (2007) Rhokinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am. J. Physiol. Heart Circ. Physiol. 292, H2598-2606. https://doi.org/10.1152/ajpheart.01393.2006
  21. Cuong, D. V., Kim, N., Youm, J. B., Joo, H., Warda, M., Lee, J. W., Park, W. S., Kim, T., Kang, S., Kim, H. and Han, J. (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am. J. Physiol. Heart Circ. Physiol. 290, H1808-1817. https://doi.org/10.1152/ajpheart.00772.2005
  22. Gao, F., Gao, E., Yue, T. L., Ohlstein, E. H., Lopez, B. L., Christopher, T. A. and Ma, X. L. (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105, 1497-1502. https://doi.org/10.1161/01.CIR.0000012529.00367.0F
  23. Bolli, R., Dawn, B., Tang, X. L., Qiu, Y., Ping, P., Xuan, Y. T., Jones, W. K., Takano, H., Guo, Y. and Zhang, J. (1998) The nitric oxide hypothesis of late preconditioning. Basic Res. Cardiol. 93, 325-338. https://doi.org/10.1007/s003950050101
  24. Sheridan, A. M. and Bonventre, J. V. (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr. Opin. Nephrol. Hypertens. 9, 427-434 https://doi.org/10.1097/00041552-200007000-00015
  25. Nossaman, B. D. and Kadowitz, P. J. (2008) Potential benefits of peroxynitrite. Open Pharmacol. J. 2, 31-53. https://doi.org/10.2174/1874143600802010031
  26. Nossaman, B. D., Bivalacqua, T. J., Champion, H. C., Baber, S. R. and Kadowitz, P. J. (2007) Analysis of vasodilator responses to peroxynitrite in the hindlimb vascular bed of the cat. J. Cardiovasc. Pharmacol. 50, 358-366. https://doi.org/10.1097/FJC.0b013e31811242cd
  27. Liu, S., Beckman, J. S. and Ku, D. D. (1994) Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J. Pharmacol. Exp. Ther. 268, 1114-1121.
  28. Lefer, D. J., Scalia, R., Campbell, B., Nossuli, T., Hayward, R., Salamon, M., Grayson, J. and Lefer, A. M. (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J. Clin. Invest. 99, 684-691. https://doi.org/10.1172/JCI119212

Cited by

  1. Calycosin-7-O-β-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0839-5
  2. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1) exposed renal ischemia/reperfusion injury in rats vol.2, 2015, https://doi.org/10.1016/j.toxrep.2015.07.019
  3. Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production vol.85, pp.2, 2014, https://doi.org/10.1038/ki.2013.342
  4. Enhancement of potency and stability of human extracellular superoxide dismutase vol.48, pp.2, 2015, https://doi.org/10.5483/BMBRep.2015.48.2.093
  5. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS vol.34, pp.4, 2014, https://doi.org/10.1007/s11596-014-1308-y
  6. Renoprotective effect of aliskiren on renal ischemia/reperfusion injury in rats: electron microscopy and molecular study vol.37, pp.2, 2015, https://doi.org/10.3109/0886022X.2014.991327
  7. Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress vol.6, pp.10, 2011, https://doi.org/10.1371/journal.pone.0025811
  8. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury vol.67, 2014, https://doi.org/10.1016/j.freeradbiomed.2013.10.815
  9. Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats vol.16, pp.4, 2017, https://doi.org/10.1016/S1499-3872(17)60006-7
  10. LPS ameliorates renal ischemia/reperfusion injury via Hsp27 up-regulation vol.50, pp.3, 2018, https://doi.org/10.1007/s11255-017-1735-3