DOI QR코드

DOI QR Code

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules

물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포

  • Lee, Soo-Kyung (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Oh, Hyun-Chul (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Baek, Seung-Bin (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 이수경 (한국기술교육대학교, 신소재공학과) ;
  • 오현철 (한국기술교육대학교, 신소재공학과) ;
  • 김대희 (한국기술교육대학교, 신소재공학과) ;
  • 정용찬 (한국기술교육대학교, 신소재공학과) ;
  • 백승빈 (한국기술교육대학교, 신소재공학과) ;
  • 김영철 (한국기술교육대학교, 신소재공학과)
  • Received : 2010.07.30
  • Accepted : 2010.08.19
  • Published : 2010.09.27

Abstract

Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Keywords

References

  1. B. G. Willis, A. Mathew, L. S. Wielunski and R. L. Opila, J. Phys. Chem. C, 112(6), 1994 (2008). https://doi.org/10.1021/jp0758317
  2. A. Mathew, L. S. Wielunski, R. L. Opila and B. G. Willis, ECS Transactions., 11(4), 183 (2007).
  3. Y.-S. Kwon, M.-Y. Lee and J.-E. Oh, Kor. J. Mater. Res., 18(3), 148 (2008). https://doi.org/10.3740/MRSK.2008.18.3.148
  4. L. Green, M. -Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Raisanen, D. Muller, M. Bude and J. Grazul, J. Appl. Phys., 92(12), 7168 (2002). https://doi.org/10.1063/1.1522811
  5. J. -H. Cho, K. S. Kim, S. -H. Lee and M. -H. Kang, Phys. Rev. B, 61(7), 4503 (2000). https://doi.org/10.1103/PhysRevB.61.4503
  6. J.-Y. Lee and J.-H. Cho, J. Phys. Chem. B., 110(37), 18455 (2006). https://doi.org/10.1021/jp063564j
  7. K. Akagi and M. Tsukada, Surf. Sci., 438(1-3), 9 (1999). https://doi.org/10.1016/S0039-6028(99)00538-5
  8. M. Ono, A. Kamoshida, N. Matsuura, T. Eguchi and Y. Hassegawa, Phys. B: Condens. Matter, 329-333(2), 1644 (2003). https://doi.org/10.1016/S0921-4526(02)02439-0
  9. G. S. Hwang, Surf. Sci., 465(3), 789 (2000). https://doi.org/10.1016/S0039-6028(00)00757-3
  10. T. Tabata, T. Aruga and Y. Murata, Surf. Sci., 179(1), 63 (1987).
  11. T. Yokoyama and K. Takayanagi, Phys. Rev. B, 61(8), 5078 (2000). https://doi.org/10.1103/PhysRevB.61.R5078
  12. Y. Kondo, T. Amakusa, M. Iwatsuki and H. Tokumoto, Surf. Sci., 453(1-3), 318 (2000). https://doi.org/10.1016/S0039-6028(00)00391-5
  13. G. Kresse and J. Hafner, Phys. Rev. B, 47(1), 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  14. G. Kresse and J. Furthuller, Comput. Mater. Sci., 6(1), 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  15. G. Kresse and J. Furthüller, Phys. Rev. B, 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  16. G. Kresse and D. Joubert, Phys. Rev. B, 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  17. D. Vanderbilt, Phys. Rev. B, 41(11), 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  18. D. M. Wood and A. Zunger, J. Phys. Math. Gen., 18(9), 1343 (1985). https://doi.org/10.1088/0305-4470/18/9/018
  19. P. Pulay, Chem. Phys., 73(2), 393 (1980).
  20. D. Sheppard, R. Terrell and G. Henkelman, J. Chem. Phys., 128(13), 134106 (2008). https://doi.org/10.1063/1.2841941
  21. H. F. Wilson, N. A. Marks and D. R. McKenzie, Surf. Sci., 587(3), 185 (2005). https://doi.org/10.1016/j.susc.2005.05.017