DOI QR코드

DOI QR Code

Initial Reaction of Zn Precursors with Si (001) Surface for ZnO Thin-Film Growth

ZnO 박막 성장을 위한 Zn 전구체와 Si (001) 표면과의 초기 반응

  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 이가원 (충남대학교 전자공학과) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Received : 2010.07.23
  • Accepted : 2010.08.21
  • Published : 2010.09.27

Abstract

We studied the initial reaction mechanism of Zn precursors, namely, di-methylzinc ($Zn(CH_3)_2$, DMZ) and diethylzinc ($Zn(C_2H_5)_2$, DEZ), for zinc oxide thin-film growth on a Si (001) surface using density functional theory. We calculated the migration and reaction energy barriers for DMZ and DEZ on a fully hydroxylized Si (001) surface. The Zn atom of DMZ or DEZ was adsorbed on an O atom of a hydroxyl (-OH) due to the lone pair electrons of the O atom on the Si (001) surface. The adsorbed DMZ or DEZ migrated to all available surface sites, and rotated on the O atom with low energy barriers in the range of 0.00-0.13 eV. We considered the DMZ or DEZ reaction at all available surface sites. The rotated and migrated DMZs reacted with the nearest -OH to produce a uni-methylzinc ($-ZnCH_3$, UMZ) group and methane ($CH_4$) with energy barriers in the range of 0.53-0.78 eV. In the case of the DEZs, smaller energy barriers in the range of 0.21-0.35 eV were needed for its reaction to produce a uni-ethylzinc ($-ZnC_2H_5$, UEZ) group and ethane ($C_2H_6$). Therefore, DEZ is preferred to DMZ due to its lower energy barrier for the surface reaction.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng., B80, 383 (2001).
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  3. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lim, Appl. Phys. Lett., 86, 243503 (2005). https://doi.org/10.1063/1.1949707
  4. M. Law, L. E. Greeme, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 255 (2005).
  5. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, Progr. Mater. Sci., 50, 293 (2005). https://doi.org/10.1016/j.pmatsci.2004.04.001
  6. S. K. Hazra and S. Basu, Solid State Electron., 49, 1158 (2005). https://doi.org/10.1016/j.sse.2005.04.015
  7. S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang and Y. Lu, J. Cryst. Growth, 225, 197 (2001). https://doi.org/10.1016/S0022-0248(01)00874-0
  8. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa and R, Martins, Thin Solid Films, 427, 401 (2003). https://doi.org/10.1016/S0040-6090(02)01184-7
  9. S. Jagar, B. Szyszka, J. Szczyrbowski and G. Bauer, Surf. Coating. Tech., 98, 1304 (1998). https://doi.org/10.1016/S0257-8972(97)00145-X
  10. N. L. Hung, H. Kim and D. Kim, Kor. J. Mater. Res., 20, 235 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.235
  11. S. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.12.655
  12. S. Masuda, K. Kitamura, Y. Okumura and S. Miyatake, J. Appl. Phys., 93, 1624 (2003). https://doi.org/10.1063/1.1534627
  13. P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes Jr., Appl. Phys. Lett., 82, 1117 (2003). https://doi.org/10.1063/1.1553997
  14. E. Fortunato, P. Barguinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira and R. Martins, Adv. Mater., 17, 590 (2005). https://doi.org/10.1002/adma.200400368
  15. A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhway, H. Minoura, A. Sarkar, A. Akiba, A. Kamiya and T. Endo, Thin Solid Films, 496, 112 (2006). https://doi.org/10.1016/j.tsf.2005.08.258
  16. A. Yamada, B. Sang and M. Konagai, Appl. Surf. Sci., 112, 216 (1997). https://doi.org/10.1016/S0169-4332(96)01022-7
  17. V. Lujala, J. Skarp, M. Tammenmaa and T. Suntola, Appl. Surf. Sci., 82-83, 34 (1994). https://doi.org/10.1016/0169-4332(94)90192-9
  18. E. Yousfi, J. Fouache and D. Lincot, Appl. Surf. Sci., 153, 223 (2000). https://doi.org/10.1016/S0169-4332(99)00330-X
  19. A. W. Ott and R. P. H. Chang, Mater, Chem, Phys., 58, 132 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8
  20. S. K. Kim, C. S. Hwang, S. -H. Ko Park and S. J. Yun, Thin Solid Films, 478, 103 (2005). https://doi.org/10.1016/j.tsf.2004.10.015
  21. S. J. Lim, J. W. Elam and M. J. Pellin, Thin Solid Films, 516, 6158 (2008). https://doi.org/10.1016/j.tsf.2007.11.044
  22. D. M. King, X. Liang, P. Li and A. W. Weimer, Thin Solid Films, 516, 8517 (2008). https://doi.org/10.1016/j.tsf.2008.05.026
  23. R. Triboulet and J. Perriere, Progr. Cryst. Growth Char. Mater., 47, 65 (2003). https://doi.org/10.1016/j.pcrysgrow.2005.01.003
  24. M. F. Guest, I. H. Hillier and V. R. Saunders, J. Organomet. Chem., 44, 59 (1972). https://doi.org/10.1016/0022-328X(72)80042-1
  25. N. Maung, J. Mol. Struct., 434, 255 (1998). https://doi.org/10.1016/S0166-1280(98)00126-2
  26. Y. S. Kim, Y. S. Won, H. Hagelin-Weaver, N. Omenetto and T. Anderson, J. Phys. Chem. A, 112, 4246 (2008). https://doi.org/10.1021/jp7103787
  27. J. Ren, Appl. Surf. Sci. 255, 5742 (2009). https://doi.org/10.1016/j.apsusc.2008.12.077
  28. L. Dong, Q.-Q. Sun, H.-W. Guo, H. Liu, S.-J. Ding and D. W. Zhang, Thin Solid Films, 517, 4355 (2009). https://doi.org/10.1016/j.tsf.2009.03.014
  29. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  30. Phys. Rev. B, 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
  31. G. Kresse and J. Furthmuller, Comput. Mat. Sci., 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  32. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  33. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  34. D. M. Wood and A. Zunger, J. Phys. A, 18, 1343 (1985). https://doi.org/10.1088/0305-4470/18/9/018
  35. P. Pulay, Chem. Phys. Lett., 73, 393 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  36. D. Sheppard and R. Terrell, G. Henkelman, J. Chem. Phys., 128, 134106 (2008). https://doi.org/10.1063/1.2841941