DOI QR코드

DOI QR Code

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Shin, Kee-Sam (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Lee, Woong (School of Nano & Advanced Materials Engineering, Changwon National University)
  • Received : 2010.07.23
  • Accepted : 2010.08.31
  • Published : 2010.09.27

Abstract

A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

Keywords

References

  1. Y. -K. Choi, K. Sugimoto, S. -M. Sing, Y. Gotoh, Y. Ohkoshi and M. Endo, Carbon, 43, 2199 (2005). https://doi.org/10.1016/j.carbon.2005.03.036
  2. S. Rul, F. Lefèvre-schlick, E. Capria, Ch. Laurent and A. Peigney, Acta Mater., 52, 1061 (2004). https://doi.org/10.1016/j.actamat.2003.10.038
  3. R. Zhong, H. Cong and P. Hou, Carbon, 41, 848 (2003). https://doi.org/10.1016/S0008-6223(02)00427-X
  4. L. Wang, H. Choi, J.-M. Myoung and W. Lee, Carbon, 47, 3427 (2009). https://doi.org/10.1016/j.carbon.2009.08.007
  5. S. Kim, H. Lee, J. Kim, C. S. Son and D. Kim, Kor. J. Mater. Res., 20(1), 25 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.1.025
  6. Y. J. Liu and X. L. Chen, Mech. Mater., 35, 69 (2003). https://doi.org/10.1016/S0167-6636(02)00200-4
  7. S. A. Meguid, J. M. Wernik and Z. Q. Cheng, Int. J. Solid. Struct., 47, 1723 (2010). https://doi.org/10.1016/j.ijsolstr.2010.03.009
  8. C. Y. Li and T. S. Chou, Compos. Sci. Tech., 66, 2409 (2006). https://doi.org/10.1016/j.compscitech.2006.01.013
  9. B. I. Yakobson, C. J. Brabec and J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996). https://doi.org/10.1103/PhysRevLett.76.2511
  10. X. Zhou, J. J. Zhou and Z. C. Ou-Yang, Phys. Rev. B, 62, 13692 (2000). https://doi.org/10.1103/PhysRevB.62.13692
  11. J. P. Lu, Phys. Rev. Lett., 79, 1297 (1997). https://doi.org/10.1103/PhysRevLett.79.1297
  12. K. N. Kudin, G. E. Scuseria and B. I. Yakobson, Phys. Rev. B, 64, 235406 (2001). https://doi.org/10.1103/PhysRevB.64.235406
  13. C. Li and T. -W. Chou, Int. J. Solid. Struct., 40, 2487 (2003). https://doi.org/10.1016/S0020-7683(03)00056-8
  14. K. I. Tserpesa and P. Papanikos, Compos. B Eng., 36, 468 (2005). https://doi.org/10.1016/j.compositesb.2004.10.003
  15. G. M. Odegard, T. S. Gates, L. M. Nicholson and K. E. Wise, Compos. Sci. Tech., 62, 1869 (2002). https://doi.org/10.1016/S0266-3538(02)00113-6
  16. J. Tersoff, Phys. Rev. B, 37, 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991
  17. T. Vodenticharova and L. C. Zhang, Phys. Rev. B, 68, 165401 (2003). https://doi.org/10.1103/PhysRevB.68.165401
  18. N. Troullier and J. L. Martins, Phys. Rev. B, 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993
  19. C. Q. Ru, Phys. Rev. B, 62, 9973 (2000). https://doi.org/10.1103/PhysRevB.62.9973
  20. W. Lee, S. Jang, M. J. Kim and J. -M. Myoung, Nanotechnology, 19, 285701 (2008). https://doi.org/10.1088/0957-4484/19/28/285701
  21. R. D. Cook, Finite Element Modeling for Stress Analysis, p. 105-144, John Wiley & Sons, NY, USA (1995).
  22. A. Haque and A. Ramasetty, Compos. Struct., 71, 68 (2005). https://doi.org/10.1016/j.compstruct.2004.09.029