DOI QR코드

DOI QR Code

ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature

저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지

  • Kwon, Byoung-Wook (Korea Institute of Science and Technology, Optoelectronic Materials Center) ;
  • Son, Dong-Ick (Korea Institute of Science and Technology, Optoelectronic Materials Center) ;
  • Park, Dong-Hee (Korea Institute of Science and Technology, Optoelectronic Materials Center) ;
  • Yang, Jeong-Do (Korea Institute of Science and Technology, Optoelectronic Materials Center) ;
  • Choi, Won-Kook (Korea Institute of Science and Technology, Optoelectronic Materials Center)
  • 권병욱 (한국과학기술연구원, 광전자재료센터) ;
  • 손동익 (한국과학기술연구원, 광전자재료센터) ;
  • 박동희 (한국과학기술연구원, 광전자재료센터) ;
  • 양정도 (한국과학기술연구원, 광전자재료센터) ;
  • 최원국 (한국과학기술연구원, 광전자재료센터)
  • Received : 2010.08.03
  • Accepted : 2010.09.02
  • Published : 2010.09.27

Abstract

To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

Keywords

References

  1. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, J. Photochem. Photobiol. Chem., 148, 57 (2002). https://doi.org/10.1016/S1010-6030(02)00039-4
  2. T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin and J. T. Hupp, Adv. Mater., 20, 1560 (2008). https://doi.org/10.1002/adma.200702781
  3. A. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang and W. Lee, Appl. Phys. Lett., 92, 092113 (2008). https://doi.org/10.1063/1.2889502
  4. Dye-sensitized solar cell, Korea Institute of Science and Technology Information; Technical Report, Daejeon, Korea (2005).
  5. Q. Zhang, C. S. Dandeneau, X. Zhou and G. Cao, Adv. Mater. 21 4087 (2009). https://doi.org/10.1002/adma.200803827
  6. M. Tsutomu, I. Masashi and K. Yujiro, J. Electrochem. Soc., 154, A455 (2007). https://doi.org/10.1149/1.2712140
  7. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Gratzel, Adv. Mater., 17, 813 (2005). https://doi.org/10.1002/adma.200401410
  8. H. J. Snaith, A. Petrozza, S. Ito, H. Miura and M. Gratzel, Adv. Funct. Mater. 19 1810 (2009). https://doi.org/10.1002/adfm.200801751
  9. S. Y. Lee, C. M. Shin, S. R. Lee, G. C. Kim, J. H. Moon, D. Y. Lee, M. H. Jeon, in Proceedings of the Materials Research Society of Korea Spring Symposium (Cheonan, Korea, May 2008), ed. H. J. Kim (The Materials Research Society of Korea, Seoul, Korea, 2008) p.45.
  10. M. J. Ko and N. -G. Park, KIC News, 11(6), 3 (2008).
  11. T. P. Chou, Q. Zhang, G. E. Fryxell and G. Z. Cao, Adv. Mater., 19, 2588 (2007). https://doi.org/10.1002/adma.200602927
  12. K. Keis, E. Magnusson, H. Lindström, S. -E. Lindquist and A. Hagfeldt, Sol. Energ. Mater. Sol. Cell., 73, 51 (2002). https://doi.org/10.1016/S0927-0248(01)00110-6
  13. K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda and V. P. S. Perera. Chem. Comm., 15 (1999). DOI: 10.1039/A806801A.
  14. M. Boucharef, C. Di Bin, M. S. Boumaza, M. Colas, H. J. Snaith, B. Ratier and J. Boucle, Nanotechnology. 21, 205203 (2010). https://doi.org/10.1088/0957-4484/21/20/205203
  15. K. Keis, J. Lindgren, S. -E. Lindquist and A. Hagfeldt, Langmuir, 16, 4688 (2000). https://doi.org/10.1021/la9912702
  16. H. -J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. -G. Park, Adv. Mater., 20, 195 (2008). https://doi.org/10.1002/adma.200700840