DOI QR코드

DOI QR Code

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Ahn, Jeoung-Hee (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kweon, Jin-Hwe (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Choi, Jin-Ho (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Published : 2010.09.15

Abstract

In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

Keywords

References

  1. Arora, J. S. (2004). Introduction to Optimum Design. 2nd ed. New York: Elsevier/Academic Press.
  2. Arora, J. S., Huang, M. W., and Hsieh, C. C. (1994). Methods for optimization of nonlinear problems with discrete variables: A review. Structural Optimization, 8, 69-85. https://doi.org/10.1007/BF01743302
  3. Baker, A. A., Dutton, S., and Kelly, D. (2004). Composite Materials for Aircraft Structures. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics.
  4. Chambers, A. R., Mowlem, M. C., and Dokos, L. (2007). Evaluating impact damage in CFRP using fibre optic sensors. Composites Science and Technology, 67, 1235-1242. https://doi.org/10.1016/j.compscitech.2006.05.023
  5. Chen, J. K., Allahdadi, F. A., and Carney, T. C. (1997). Highvelocity impact of graphite/epoxy composite laminates. Composites Science and Technology, 57, 1369-1379. https://doi.org/10.1016/S0266-3538(97)00067-5
  6. Chen, S. Y. (2001). An approach for impact structure optimization using the robust genetic algorithm. Finite Elements in Analysis and Design, 37, 431-446. https://doi.org/10.1016/S0168-874X(00)00056-1
  7. De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Thesis, University of Michigan.
  8. Fujii, K., Aoki, M., Kiuchi, N., Yasuda, E., and Tanabe, Y. (2002). Impact perforation behavior of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering, 27, 497-508. https://doi.org/10.1016/S0734-743X(01)00152-X
  9. Gower, H. L., Cronin, D. S., and Plumtree, A. (2008). Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35, 1000-1008. https://doi.org/10.1016/j.ijimpeng.2007.07.007
  10. Kogiso, N., Watson, L. T., Gürdal, Z., and Haftka, R. T. (1994). Genetic algorithms with local improvement for composite laminate design. Structural Optimization, 7, 207-218. https://doi.org/10.1007/BF01743714
  11. Lin, C. C. and Lee, Y. J. (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345. https://doi.org/10.1016/S0263-8223(03)00182-X
  12. Livermore Software Technology Corporation. (2008). LS-DYNA Keyword User’s Manual. Livermore, CA: Livermore Software Technology Corporation.
  13. Lopez-Puente, J., Zaera, R., and Navarro, C. (2008). Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39, 374-387. https://doi.org/10.1016/j.compositesa.2007.10.004
  14. Naik, N. K. and Shrirao, P. (2004). Composite structures under ballistic impact. Composite Structures, 66, 579-590. https://doi.org/10.1016/j.compstruct.2004.05.006
  15. Park, I. J., Jung, S. N., Kim, D. H., and Yun, C. Y. (2009). General purpose cross-section analysis program for composite rotor blades. International Journal of Aeronautical and Space Sicences, 10, 77-85. https://doi.org/10.5139/IJASS.2009.10.2.077
  16. Soremekun, G., Gurdal, Z., Haftka, R. T., and Watson, L. T. (2001). Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers and Structures, 79, 131-143. https://doi.org/10.1016/S0045-7949(00)00125-5
  17. Stander, N., Roux, W., Goel, T., Eggleston, T., and Craig, K. (2008). LS-OPT User’s Manual. Livermore, CA: Livermore Software Technology Corporation.
  18. Talebi, H., Wong, S. V., and Hamouda, A. M. S. (2009). Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite Structures, 87, 314-320. https://doi.org/10.1016/j.compstruct.2008.02.009
  19. Van Hoof, J. (1999). Modelling of Impact Induced Delamination in Composite Materials. PhD Thesis, Carleton University.
  20. Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures, 62, 123-128. https://doi.org/10.1016/S0263-8223(03)00098-9
  21. Will, M. A., Franz, T., and Nurick, G. N. (2002). The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Composite Structures, 58, 259-270. https://doi.org/10.1016/S0263-8223(02)00050-8
  22. Yong, M., Falzon, B. G., and Iannucci, L. (2008). On the application of genetic algorithms for optimising composites against impact loading. International Journal of Impact Engineering, 35, 1293-1302. https://doi.org/10.1016/j.ijimpeng.2007.10.004

Cited by

  1. NiTi SMA Wires Coupled with Kevlar Fabric: a Real Application of an Innovative Aircraft LE Slat System in SMAHC Material 2017, https://doi.org/10.1007/s10443-017-9618-4