Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing

유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성

  • Kim, Wook-Soo (Department of Chemical Engineering, Pusan National University) ;
  • Park, Deuk-Joo (Department of Chemical Engineering, Pusan National University) ;
  • Kang, Yun-Hee (Department of Chemical Engineering, Pusan National University) ;
  • Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University) ;
  • Kim, Won-Ho (Department of Chemical Engineering, Pusan National University)
  • Received : 2010.04.17
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.

본 연구에서는 filler-rubber interaction을 향상시키기 위하여 clay의 유기화제로 3-aminopropyltriethoxysilane(APTES)을 사용하여 styrene butadiene rubber(SBR)/organoclay nanocomposite를 라텍스법으로 제조하였다. 컴파운딩시 혼련 온도에 따라 bis(triethoxysilylpropyl)tetrasulfide(TESPT)를 첨가하여 APTES에 의해 생성된 hydroxyl group과 TESPT의 ethoxy group 사이에 실란화 반응 정도에 따른 filler-rubber interaction 향상 정도를 연구하기 위하여 X-선 회절법을 이용한 silicates의 층간구조분석, 모폴로지(morphology), 적외선분광법, 팽윤도 및 기계적물성을 평가하였다. XRD분석과 TEM이미지로 관찰한 결과 silicates 층간에 APTES가 삽입된 구조를 형성하였고 고무기질 내에 organoclay의 분산이 잘 이루어졌다는 것을 알 수 있었다. 또한, 적외선 분광법을 이용하여 APTES-MMT를 분석한 결과 APTES에 의해 silicates 표면에 다량의 hydroxyl 그룹이 형성되어 TESPT의 ethoxy group과 실란화 반응이 가능하였다. SBR/APTES-MMT 컴파운드에 TESPT를 첨가시 SBR/APTESMMT 컴파운드보다 300% 모듈러스가 약 1.3 배 정도 증가하였다. 이는 APTES의 hydroxyl group과 TESPT의 ethoxy group 사이에 실란화 반응이 이루어져 filler-rubber interaction이 향상된 결과였으며, 컴파운딩시 혼련온도 증가에 따른 모듈러스 향상 효과는 미미하였다. 결과적으로 SBR/APTES-MMT 컴파운드의 경우 고무 기질 내에 silicates의 분산 정도와 가교도 증가에 따라 모듈러스가 증가하였으며, SBR/APTES-MMT 컴파운드에 TESPT를 첨가시 filler-rubber interaction이 향상되어 모듈러스가 더욱 증가하였다.

Keywords

References

  1. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, "Swelling Behavior of Montmorillonite Cation Exchanged for $\epsilon$-Amino Acids by $\epsilon$-Caprolactam", J. Mater. Res., 8, 1174 (1993). https://doi.org/10.1557/JMR.1993.1174
  2. A. Okada, Y. Kojima, M. Kawasumi, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Synthesis of Nylon 6-Clay Hybrid", J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179
  3. M. F. Brigatti, E. Galan, and B. K. G. Theng, "Handbook of Clay Science", ed. by F. Bergaya, B. K. G. Theng, G. Lagaly, Chapter 2. p. 19, Elsevier, Netherlands, 2006.
  4. Y. Wang, L. Zhang, C. Tang, and D. Yu, "Preparation and Characterization of Rubber-Clay Nanocomposites", J. Appl. Polym. Sci., 78, 1879 (2000). https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  5. W. S. Kim, D. H. Lee, I. J. Kim, M. J. Son, S. G. Cho, and W. Kim, "SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds", Macromo. Res., 17, 776 (2009). https://doi.org/10.1007/BF03218614
  6. W. S. Kim, J. Yi, D. H. Lee, I. J. Kim, W. J. Son, J. W. Bae, and W. Kim, "Effect of 3-aminopropyltriethoxysilane and N,N-dimethyldodecylamine as Modifiers of $Na^{+}$-montmorillonite on SBR/Organoclay Nanocomposites", J. Appl. Polym. Sci., 116, 3383 (2010).
  7. R. Hui, Q. Yixin, and Z. Suhe, "Reinforcement of Styrene- Butadiene Rubber with Silica Modified by Silane Coupling Agents: Experimental and Theoretical Chemistry Study", Chinese J. Chem. Eng., 14, 93 (2006). https://doi.org/10.1016/S1004-9541(06)60043-8
  8. J. L. Valentin, I. Mora-Barrantes, A. Rodriguez, L. Ibarra, and L. Gonzalez, "Effect of Oleyl Amine on SBR Compounds Filled with Silane Modified Silica", J. Appl. Polym. Sci., 103, 1806 (2007). https://doi.org/10.1002/app.25332
  9. M. J. Son and W. Kim, "Effect of Organoclay on the Dynamic Properties of SBR Compound Reinforced with Carbon Black and Silica", Elastomer, 41, 260 (2006).
  10. W. Kim, S. K. Kim, J. H. Kang, and Y. Choe, "Structure and Properties of the Organoclay Filled NR/BR Nanocomposites", Macromo. Res., 14, 187 (2006). https://doi.org/10.1007/BF03218507
  11. W. Kim, B. S. Kang, S. G. Cho, C. Ha, and J. W. Bae, "Styrene Butadiene Rubber-Clay Nanocomposites using a Latex Method: Morphology and Mechanical Properties", Compos. Interface, 14, 409 (2007). https://doi.org/10.1163/156855407781291218
  12. Q. Jia, Y. Wu, Y. Wang, M. Lu, and L. Zhang, "Enhanced Interfacial Interaction of Rubber/Clay Nanocomposites by a Novel Two-step Method", Compos. Sci. Technol., 68, 1050 (2008). https://doi.org/10.1016/j.compscitech.2007.07.006
  13. P. A. Ciullo and N. Hewitt, "The Rubber Formulary", p. 28, Noyes Publications, New York, 2003.
  14. 한승철, 최석주, 한민현, "실리카 고무배합기술", 고무기술, 2, 100 (2001).
  15. J. W. ten Brinke, S. C. Debnath, L. A. E. M. Reuvekamp, and J. W. M. Noordermeer, "Mechanistic Aspects of the Role of Coupling Agents in Silica-rubber Composites", Compos. Sci. Technol., 63, 1165 (2003). https://doi.org/10.1016/S0266-3538(03)00077-0
  16. Z. Xu, Q. Liu, and J. A. Finch, "Silanation and Stability of 3-Aminopropyltriethoxysilane on Nanosized Superparamagnetic Paticles: I. Direct Silanation", Appl. Surface Sci., 120, 269 (1997). https://doi.org/10.1016/S0169-4332(97)00234-1
  17. J. Ma, P. Xiang, Y. W. Mai, and L. Q. Zhang, "A Novel Approach to High Performance Elastomer by Using Clay", Macromol. Rapid Commun., 25, 1692 (2004). https://doi.org/10.1002/marc.200400286
  18. Y. Q. Wang, H. F. Zhang, Y. P. Wu, J. Wang, and L. Q. Zhang, "Structure and Properties of Strain Crystallized Rubber-clay Nanocomposites by Co-coagulating the Rubber Latex and Clay Aqueous Suspension", Symposium of International Rubber Conference, p. 420, Beijing, China, 2004.
  19. H. F. Zhang, Y. Q. Wang, Y. P. Wu, L. Q. Zhang, J. Yang, and X. F. Wang, "Study on Aging Properties of Clay/natural Rubber Nanocomposites", Symposium of International Rubber Conference, p. 240, Beijing, China, 2004.
  20. Y. Wu, Q. Jia, D. Yu, and L. Zhang, "Structure and Properties of Nitrile Rubber (NBR)-clay Nanocomposites by Co-coagulating NBR Latex and Clay Aqueous Suspension", J. Appl. Polym. Sci., 89, 3855 (2003). https://doi.org/10.1002/app.12568
  21. L. Q. Zhang, Y. Z. Wang, Y. Q. Wang, Y. A. Sui, and D. S. Yu,. "Morphology and Mechanical Properties of Clay/Styrenebutadiene Rubber Nanocomposites", J. Appl. Polym. Sci., 78, 1873 (2000). https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  22. Y. Z. Wang, L. Q. Zhang, C. H. Tang, and D. S. Yu, "Preparation and Characterization of Rubber-clay Nanocomposites", J. Appl. Polym. Sci., 78, 1879 (2000). https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  23. Y. Wu, Y. Wang, H. Zhang, Y. Wang, D. Yu, L. Zhang, and J. Yang, "Rubber-pristine Clay Nanocomposites Prepared by Co-coagulating Rubber Latex and Clay Aqueous Suspension", Compos. Sci. Technol., 65, 1195 (2005). https://doi.org/10.1016/j.compscitech.2004.11.016
  24. Y. Wang, H. Zhang, Y. Wu, J. Yang, and L. Zhang, "Preparation and Properties of Natural Rubber/rectorite Nanocomposites", Europ. Polym. J., 41, 2776 (2005). https://doi.org/10.1016/j.eurpolymj.2005.05.019
  25. M. Alexandre and P. Dubois, "Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials", Mater. Sci. Eng., 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  26. L. M. Daniel, R. L. Frost, and H. Y. Zhu, "Edge-modification of Laponite with Dimethyl-octylmethoxysilane", J. Colloid Interface Sci., 321, 302 (2008). https://doi.org/10.1016/j.jcis.2008.01.032