DOI QR코드

DOI QR Code

Electrical conductivity of olivine type LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 powders

올리빈형 LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 분말의 전기전도도

  • Kim, Chang-Sam (Battery Research Center, Korea Institute of Science and Technology)
  • 김창삼 (한국과학기술연구원, 이차전지연구센터)
  • Received : 2010.05.31
  • Accepted : 2010.06.11
  • Published : 2010.06.30

Abstract

$LiFePO_4$ doped with Cr showed improved electrochemical properties as a cathode material of lithium-ion batteries compared to the undoped. The improvement was thought that the doping would raise the electronic conductivity of the compounds. The electrical conductivity of $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder was measured in the temperature range from 30 to $80^{\circ}C$. The doped powders were synthesized via mechanochemical milling and subsequent heat treatment at 675~$750^{\circ}C$ for 5~10h. The doping enhanced grain growth and electrical conductivity. The electrical conductivity of the $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder at $30^{\circ}C$ was $1{\times}10^{-8}S/cm$, which was higher two orders of magnitude than that of the undoped.

크롬이 도핑된 $LiFePO_4$ 분말이 도핑되지 않은 것보다 이차전지용 양극활물질로서 우수한 전기화학적 특성을 나타내었다. 이러한 향상은 도핑에 의해서 양극활물질의 전자전도도가 높아지기 때문인 것으로 생각되고 있다. 크롬과 또 하나의 전형원소가 도핑된 $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$$LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$의 전기전도도를 30에서 $80^{\circ}C$ 범위에서 측정하였다. 도핑된 분말은 유성밀에 의한 기계화학적 혼합을 한 후 675~$750^{\circ}C$에서 5~10시간 열처리하여 합성하였다. 이러한 도핑은 분말의 전기전도도를 높이고 입자 성장을 촉진시켰다. 크롬과 알루미늄이 도핑된 $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ 분말의 $30^{\circ}C$에서의 전기전도도는 $1{\times}10^{-8}S/cm$이었으며, 이 값은 도핑하지 않은 것보다 두 자릿수 높은 값 이었다.

Keywords

References

  1. S.Y. Chung, J.T. Bloking and Y.M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes", Nature 1 (2002) 123. https://doi.org/10.1038/nmat732
  2. G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou and J.H. Ahn, "Physical and electrochemical properties of doped lithium iron phosphate electrodes", Electrochim. Acta 50 (2004) 443. https://doi.org/10.1016/j.electacta.2004.04.047
  3. J.F. Ni, H.H. Zhou, J.T. Chen and X.X. Zhang, "$LiFePO_{4}$ doped with ions prepared by co-precipitation method", Materials Lett. 59 (2005) 2361. https://doi.org/10.1016/j.matlet.2005.02.080
  4. D. Wang, H. Li, S. Shi, X. Huang and L. Chen, "Improving the rate performance of $LiFePO_{4}$ by Fe-site doping", Electrochim. Acta 50 (2005) 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  5. A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, "Phospho-olivine as positive-electrode materials for rechargeable lithium batteries", J. Electrochem. Soc. 144 (1997) 1188. https://doi.org/10.1149/1.1837571
  6. Z.P. Guo, S. Zhong, G.X. Wang, H.K. Liu and S.X. Dou, "Structure and electrochemical characteristics of $LiMn_{0.7}M_{0.3}O_{2}$ (M=Ti, V, Zn, Mo, Co, Mg, Cr)", J. Alloys Compd. 348 (2003) 231. https://doi.org/10.1016/S0925-8388(02)00805-8
  7. H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim and B.W. Cho, "Rate performance and structural change of Cr-doped $LiFePO_{4}/C$ during cycling", Electrochim. Acta 53 (2008) 7946. https://doi.org/10.1016/j.electacta.2008.06.005
  8. C. Brahima, A. Ringueda, E. Gourbaa, M. Cassira, A. Billardb and P. Briois, "Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering", J. Power Sources 156 (2006) 45. https://doi.org/10.1016/j.jpowsour.2005.08.017
  9. N.H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono and M. Graetzel, "Enhanced Electrochemical performance of mesoparticulate $LiMnPO_{4}$ for lithium ion batteries", Electrochem. Solid-State Lett. 9 (2006) A277. https://doi.org/10.1149/1.2191432

Cited by

  1. Synthesis and characterization of thermally stable pink-red inorganic pigment for digital color vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.169