DOI QR코드

DOI QR Code

Evaluation of scale accuracy and effect of off-the-visual-axis on schematic retinoscope training eye

검영기 훈련 모형안의 굴절상태 눈금과 벗어난 시축의 평가

  • Received : 2010.08.19
  • Accepted : 2010.10.15
  • Published : 2010.10.31

Abstract

To investigate accuracy of graduated scale of schematic retinoscope training eye(schematic eye) and induced effect when measured at off-axis from visual axis. Two skilled retinoscopist measured refractive power using retinoscope in random order. Seven schematic eyes from a single manufacturer were recruited and set to mark +4.00 to -6 diopter(+4, +3, +2, +1, 0, -1, -2, -3, -4, -5, -6). After introducing +2.00 diopter trial lens(50cm working lens), neutral distance was measured at 180 degree to estimate accuracy of scale, and refractive power measured at 0, 5, 10, 15 and 20 degree off-axis to see if any error was induced. According to the results measured by two specialists, in six of seven schematic eye, scale setting varied (p<0.05) and measured refractive power at 5, 10, 15 and 20 degree off-axis from visual axis were $-0.13{\pm}0.06$, $-0.29{\pm}0.06$, $-0.58{\pm}0.11$, and $-0.83{\pm}0.16$ diopter respectively. In some schematic eye, scale graduated on the schematic eye and scale measured by retinoscopy could be different and if retinoscopy is performed off-axis from visual axis, any measuring error can be caused.

검영기 훈련 모형안(모형안)에 표시된 굴절상태 눈금과 벗어난 시축의 효과를 타각적 굴절검사인 검영법으로 알아보자 하였다. 두 명의 능숙한 retinoscopist가 검영법을 이용하여 굴절상태를 무작위로 검사하였다. 동일한 7개의 훈련 모형안을 선정하여 각각 +4에서 -6 diopter(+4, +3, +2, +1, 0, -1, -2, -3, -4, -5, -6) 굴절상태 눈금을 맞추고 거리보정용 시험렌즈를 가입하여 180도 경선에서 중화거리를 측정하여 눈금설정 상태를 평가하였고, 시축과 5, 10, 15, 20도 시축에서 벗어난 굴절력을 측정하였다. 두 명의 retinoscopist가 측정한 눈금설정 상태는 7개 중 6개의 훈련 모형안 이 통계적인 차이가 있었다(P<0.05). 5, 10, 15, 20도 시축에서 벗어난 검영법 굴절력은 $-0.13{\pm}0.06$, $-0.29{\pm}0.06$, $-0.58{\pm}0.11$, $-0.83{\pm}0.16$ diopter 이였다. 모형안에 표시된 굴절상태 눈금과 검영법을 이용하여 측정한 굴절상태 눈금이 다를 수 있고, 모형안에 검영을 시축에 벗어나 시행할 경우 굴절 검사값에 오차를 유발할 수 있다.

Keywords

References

  1. Goss DA, West RW, Introduction to the optics of the eye. Boston, Butterworth-Heinemann, pp. 155-161, 2002.
  2. Sloane AE, Manual of refraction, 2nd ed. Boston, Little, Brown Co, pp. 83-109, 1970.
  3. Corboy JM. The retinoscopy Book, Fifth ed. Thorofare, NJ Slack, pp, 37-48, 2003.
  4. Saunders RA, Andrew CJ, Refractive changes in children under general anesthesia. J Pediatric Ophthalmol Strabismus 18, pp. 38-41, 1981.
  5. Safir A. Refraction and clinical optics. Hagerstown: Harper & Row, Publishers Inc., pp. 174, 1980.
  6. Abrams D. Duke-Elder's practice of refraction, 10th ed. New York: Churchill Livingstone, pp. 164, 1993.
  7. Michaels DD. Visual optics and refraction a clinical approach, 3rd ed. St. Louis: Mosby, pp. 305, 1985.
  8. Lotmar W, Lotmar T. Peripheral astigmatism in the human eye: Experimental data and theoretical model predictions. J Opt Soc Am, 64, pp. 510-513, 1974. https://doi.org/10.1364/JOSA.64.000510
  9. Millodot M, Lamont A. Refraction of the periphery of the eye. J Opt Soc Am, 64, pp. 110-111, 1974. https://doi.org/10.1364/JOSA.64.000110
  10. Rempt F, Hoogerheide J, Hoogenboom WPH. Peripheral retinoscopy and the skiagram. Ophthalmologica, 162, pp. 1-10, 1971. https://doi.org/10.1159/000306229
  11. Abrams D. Duke-Elder's practice of refraction, 10th ed. New York: Churchill Livingstone, pp164, 1993.
  12. Berges O, Puech M, Assouline M, Letenneur L, Gastellu-Etchegorry M. B-mode-guided vector-A-mode versus Amode biometry to determine axial length and intraocular lens power. J Cataract Refract Surg, 24, pp. 529-535, 1998. https://doi.org/10.1016/S0886-3350(98)80297-6
  13. Erickson P. Effects of intraocular lens position errors on postoperative refractive error. J Cataract Refract Surg, 16, pp. 305-311. 1990. https://doi.org/10.1016/S0886-3350(13)80699-2
  14. Korynta J, Bok J, Cendelin J, Michalova K. Computer modeling of visual impairment caused by intraocular lens misalignment. J Cataract Refract Surg, 25, pp. 100-105, 1999. https://doi.org/10.1016/S0886-3350(99)80019-4