DOI QR코드

DOI QR Code

Fabrication of High-Quality Diffractive-Lens Mold having Submicron Patterns

서브 미크론의 패턴으로 구성된 고효율 회절 렌즈 몰드 제작

  • Woo, Do-Kyun (Dept. of Mechatronics, Gwangju Institute of Science and Technology (GIST)) ;
  • Hane, Kazuhiro (Nanomechanics, Tohoku Univ.) ;
  • Lee, Sun-Kyu (Dept. of Mechatronics, Gwangju Institute of Science and Technology (GIST))
  • Received : 2010.05.13
  • Accepted : 2010.09.13
  • Published : 2010.11.01

Abstract

In this paper, we present the fabrication of a high-quality diffractive-lens mold having submicron patterns, which is suitable for an ultra-slim optical system. In order to fabricate high-quality diffractive lens with a variety of submicron patterns, the multi-alignment method was used; high-resolution electron-beam lithography and FAB plasma etching were carried out to obtain the patterns. The most important key technology in the multi-alignment method is to reduce alignment error, lithography error, and etching error. In this paper, these major fabrication errors were minimized, and a high-quality diffractive lens with a diameter of $267\;{\mu}m$ (NA = 0.25), minimum pattern width of 226 nm, and thickness of 819 nm was successfully fabricated.

본 연구는 초슬림의 광학 시스템에 적용 가능한 서브 미크론의 패턴으로 구성된 고효율 회절 렌즈의 금형을 가공하는 방법에 관한 것이다. 서브미크론의 패턴으로 구성된 고효율 회절 렌즈를 가공하기 위해 분해능이 뛰어난 전자빔 노광장치와 고속 원자 빔 플라즈마 에칭 공정을 바탕으로 다중 정렬방식을 이용하였다. 다중 정렬 방식을 이용하여 고효율 회절 렌즈를 가공 하기 위해서는 정렬 오차, 노광 오차 그리고 에칭 오차를 최소화 해야만 한다. 본 연구에서는 이 주요한 세 가지 가공 오차를 최소화 하였으며, 이를 바탕으로 지름 $267\;{\mu}m$ (NA=0.25), 최소 선 폭 226 nm, 렌즈 두께 819 nm 를 가지는 고효율 회절 렌즈 가공을 실현 하였다.

Keywords

References

  1. Rayleigh, L., 1888, “Wave Theory of Light,” Vol.XXIV, Encyclopedia Britannica, Charles Scribner’s Sons, New Work, p.437.
  2. Falkis, D. and Morris, G.M., 1995, “Spectral Properties of Multiorder Diffractive lens,” Appl. Opt. Vol. 34, pp. 2462-2468 https://doi.org/10.1364/AO.34.002462
  3. McClure, E. C., 1991, “Manufacturers Turn Precision Optics with Diamond,” Laser Focus World, pp. 95-105
  4. Gale, M.T., Rossi, M., Pedersen, J. and Schutz, H., 1994, “Fabrication of Continuous-Relief Micro-Optical Elements by Direct Laser Writing in Photoresist,” Opt. Eng., Vol. 33, pp. 3556-3566. https://doi.org/10.1117/12.179892
  5. Turunen, J. and Wyrowski, F., 1997, “Diffractive Optics for Industrial and Commercial Applications,” Akademie Verlag, Berlin, pp.41.
  6. Yamada, K., Watanabe, W., Li, Y. and Itoh, K., 2004, “Multilevel Phase-Type Diffractive Lenses in Silica Glass Induced by Filamentation of Femtosecond Laser Pulses,” Opt. Lett., Vol. 29, pp.1846-1848. https://doi.org/10.1364/OL.29.001846
  7. Wu, D., Niu, L. G., Chen, Q. D., Wang, R and Sun, H. B., 2008, “High Efficiency Multi-Level Phase-Type Fractal Zone Plates,” Opt. Lett., Vol.33, pp.2913-2915. https://doi.org/10.1364/OL.33.002913
  8. Tamura, S., Yasumoto, M., Kamijo, N., Takeuchi, A., Uesugi, K. and Suzuki, Y., 2009, “Multilevel-Type Multilayer X-ray Lens (Fresnel zone plate) by Sputter deposition,” Vaccum., Vol. 83, pp.691-694. https://doi.org/10.1016/j.vacuum.2008.04.046
  9. Turunen, J. and Wyrowski, F., 1997, “Diffractive Optics for Industrial and Commercial Applications,” Akademie Verlag, Berlin, pp.82-83.
  10. Herzig, H. P., 1997, “Micro-Optics Elements, System and Application,” Taylor and Francis, London, p. 58.
  11. Woo, D. K., Hane, K. and Lee, S. K., 2008, “Fabrication of a Multi-Level Lens Using Independent-Exposure Lithography and FAB Plasma Etching,” J. Opt. A:Pure Appl. Opt., Vol. 10, pp. 044001. https://doi.org/10.1088/1464-4258/10/4/044001
  12. Sinzinger, S. and Jahns, J., 2003, “Microoptics,” WILEY-VCH, Weinheim, pp.139-141.