DOI QR코드

DOI QR Code

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM

AFM 기반 Pulse 를 이용한 전기화학적 가공

  • Lee, Jeong-Min (Dep. of Mechanical Design Engineering, Chosun Univ.) ;
  • Kim, Sun-Ho (Dep. of Mechanical Design Engineering, Chosun Univ.) ;
  • Park, Jeong-Woo (Dep. of Mechanical Design Engineering, Chosun Univ.)
  • 이정민 (조선대학교 기계설계공학과) ;
  • 김선호 (조선대학교 기계설계공학과) ;
  • 박정우 (조선대학교 기계설계공학과)
  • Received : 2010.05.13
  • Accepted : 2010.08.23
  • Published : 2010.11.01

Abstract

In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

본 연구는 AFM 을 이용하여 nano scale 의 Lithography 를 구현하는 것이다. 외부의 pulse generator 를 통하여 전류를 통전 시키는 방법을 수정함으로써, 일정 습도를 유지한 상태의 AFM 내부에서 Si-wafer 의 표면과 Tip의 사이에 전원을 인가하고 pulse generator 에서 임의로 pulse 폭의 변화를 준다. Si-wafer 표면에서 물 분자가 Tip과 wafer 사이의 직접적인 전류의 이동조절로 인해 전기 화학적 반응을 적절히 제한하여 산화물을 생성시키는 방법이다. 이렇게 생성된 산화물은 불산 처리를 통하여 산화물을 식각시켜 미세 그루브를 구현 할 수 있다. 본 연구를 통한 나노 패턴 생성 기법은 나노 머시닝 기술의 진보에 잠재적 가능성을 제시한다.

Keywords

References

  1. Binnig, G., Rohrer, H., Gerber, C. and Weibel E., 1982, “Tunneling Through a Controllable Vacuum Gap,” Appl. Phys., Lett. 40, pp. 178-180. https://doi.org/10.1063/1.92999
  2. Chen, C. J., 2008, Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford: Oxford University Press).
  3. Bonnell, D. A., 2001, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications 1st edn (New York: Wiley-VCH).
  4. Bai, C., 1999, Scanning Tunneling Microscopy and its Application 2nd edn (New York: Springer).
  5. Eigler, D. M. and Schweizer, E. K., 1990, Positioning Single Atoms with a Scanning Tunneling Microscope Nature, 344, pp. 524-526.
  6. Klink, C., Olesen, L., Besenbacher, F., Stensgaard, I., Laegsgaard, E. and Lang, N. D., 1993, Interaction of C with Ni(100)—atom-resolved studies of the clock reconstruction Phys. Rev., Lett. 71, pp. 4350-4353. https://doi.org/10.1103/PhysRevLett.71.4350
  7. Tersoff, J. and Hamann, D. R., 1983, Theory and Application for the Scanning Tunneling Microscope. Phys. Rev., Lett. 50, pp.1998-2001. https://doi.org/10.1103/PhysRevLett.50.1998
  8. Monnell, J. D., Stapleton, J. J., Dirk, S. M., Reinerth, W. A., Tour, J. M., Allara, D. L. and Weiss, P. S., 2005, Relative Conductances of Alkaneselenolate and Alkanethiolate Monolayers on Au{111} J. Phys., Chem. B 109, pp. 20343-20349. https://doi.org/10.1021/jp044186q
  9. Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T .and Smalley, R. E., 1996, Nanotubes as Nanoprobes in Scanning Probe Microscopy Nature, 384, pp. 147-150.
  10. Morris, V. J., 1999, Atomic Force Microscopy for Biologists 1st edn (London: Imperial College Press).
  11. Bennewitz, R., Foster, A. S., Kantorovich, L. N., Bammerlin, M., Loppacher, C., Schar, S., Guggisberg, M., Meyer, E. and Shluger, A. L., 2000, Atomically Resolved Edges and Kinks of NaCl Islands on Cu(111): Experiment and Theory Phys., Rev. B 62 pp. 2074-2084.
  12. Hafner, J. H., Cheung, C. L. and Lieber, C. M., 1999, Growth of Nanotubes for Probe Microscopy Tips Nature, 398, pp. 761-762.
  13. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. and Lieber, C. M., 1998, Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology Nature, 394, pp. 52-55.
  14. Binnig, G., Quate, C. F. and Gerber, C., 1986, Atomic Force Microscope Phys. Rev., Lett. 56, pp. 930-933.
  15. Giessibl, F. J., 1995, Atomic-Resolution of the Silicon (111)-(7 × 7) Surface by Atomic-Force Microscopy Science, 267, pp. 68-71.
  16. Fukui, K., Onishi, H. and Iwasawa, Y., 1997, Atom-Resolved Image of the TiO (110) Surface by Noncontact Atomic Force Microscopy Phys. Rev., Lett. 79, pp. 4202-4205.
  17. Giessibl, F. J., 2003, Advances in Atomic Force Microscopy Rev. Mod. Phys., 75, pp. 949-983.
  18. Giessibl, F. J., Hembacher, S., Bielefeldt, H. and Mannhart, J., 2000, Subatomic Features on the Silicon (111)-(7 × 7) Surface Observed by Atomic Force Microscopy Science, 289, pp. 422-425.
  19. Vettiger, P. et al., 1999, Ultrahigh Density, High-Data-Rate NEMS-Based AFM Data Storage System Microelectron.Eng., 46, pp. 11-17.
  20. Vettiger, P. et al., 2002, The ‘Millipede’—Nanotechnology Entering Data Storage IEEE Trans. Nanotechnol., 1, pp. 39-55. https://doi.org/10.1109/TNANO.2002.1005425
  21. Vettiger P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., Rothuizen, H. E., Stutz, R., Widmer, R. and Binnig, G. K., 2000, The ‘Millipede’—More than one Thousand Tips for Future AFM Data Storage IBM J. Res.Dev., 44, pp. 323-340. https://doi.org/10.1147/rd.443.0323
  22. Hong, S. H. and Mirkin, C. A., 2000, A Nanoplotter with Both Parallel and Serial Writing Capabilities Science, 288, pp. 1808-1811.
  23. Zhang, M., Bullen, D., Chung, S. W., Hong, S., Ryu, K. S., Fan, Z. F., Mirkin, C. A. and Liu, C., 2002, A MEMS Nanoplotter with High-Density Parallel Dip-pen Nanolithography Probe Arrays Nanotechnology, 13, p. 212.
  24. Salaita, K., Lee, S. W., Wang, X. F., Huang, L., Dellinger, T. M., Liu, C. and Mirkin, C. A., 2005, Sub-100nm, Centimeter-Scale, Parallel Dip-Pen Nanolithography Small, 1, pp. 940-945.
  25. Lenhert, S., Sun, P., Wang, Y. H., Fuchs, H. and Mirkin, C. A., 2007, Massively Parallel Dip-Pen Nanolithography of Heterogeneous Supported Phospholipid Multilayer Patterns Small, 3, pp. 71-75.
  26. Lee, S. W., Oh, B. K., Sanedrin, R. G., Salaita, K., Fujigaya, Tand. Mirkin. C. A., 2006, Biologically Active Protein Nanoarrays Generated Using Parallel Dip-Pen Nanolithography Adv. Mater., 18, pp. 1133-1136. https://doi.org/10.1002/adma.200600070
  27. Bullen, D., Chung, S. W., Wang, X. F., Zou, J., Mirkin, C. A. and Liu, C., 2004, Parallel Dip-Pen Nanolithography with Arrays of Individually Addressable Cantilevers Appl. Phys. Lett., 84, pp. 789-791. https://doi.org/10.1063/1.1644317
  28. Salaita, K., Wang, Y. H., Fragala, J., Vega, R. A., Liu, C. and Mirkin, C. A., 2006, Massively Parallel Dip-Pen Nanolithography with 55000-Pen Two-Dimensional Arrays Angew. Chem., 45, pp. 7220-7223. https://doi.org/10.1002/anie.200603142
  29. Snow, E. S., Campbell, P. M., Buot, F. A., Park, D., Marrian, C. R. K. and Magno, R., Appl. Phys., Lett. 72, 3071 s1998d.
  30. Garcia, R., Calleja, M. and Rohrer, J. H., Appl. Phys., 86, 1898 s1999d.
  31. Cooper, E. B., Manalis, S. R., H. Fang, Dai, H., Matsumoto, K., Minne, S. C., Hunt, T. and Quate, C. F., Appl. Phys. Lett., 75, 3566 s1999d.
  32. Matsumoto, K., Gotoh, Y., Maeda, T., Dagata, J. A. and Harris, J. S., Appl. Phys. Lett., 76, 239 s2000d.
  33. Chien, F. S., Chou, Y.-C., Chen, T. T., Hsieh, W.-F., Chao, T. S. and Gwo, J. S., Appl. Phys., 89, 2465 s2001d.
  34. Bouchiat, V., Faucher, M., Thirion, C., Wernsdorfer, W., Fournier, T. and Pannetier, B., Appl. Phys., Lett. 79, 123 s2001d.
  35. Pellegrino, L., Pallecchi, I., Marré, D., Bellingeri, E. and Siri, A. S., Appl. Phys., Lett. 81, 3849 s2002d.
  36. Dorn, A., Sigrist, M., Fuhrer, A., Ihn, T., Heinzel, T., Ensslin, K., Wegscheider, W. and Bichler, M., Appl. Phys., Lett. 80, 252 s2002d.
  37. Okada, Y., Iuchi, Y., Kawabe, M. and Harris Jr., J. S., Appl. Phys., Lett. 88, 1136 s2000d.
  38. Chien, F. S. S., Chang, J. W., Lin, S. W., Chou, Y. C., Chen, T. T., Gwo, S., Chao, T.S. and Hsieh, W. F., Appl. Phys., Lett. 76, 360 s2000d.
  39. Xie, X. N., Chung, H. J., Sow, C. H. and Wee, A. T. S., Appl. Phys., Lett. 84, 4914 s2004d.
  40. Park, J. W., Kawasegi, N., Morita, N. and Lee, D. W., 2004.09.06, "Tribonanolithography of Silicon in Aqueous Solution Based on Atomic Force Microscopy," Applied Physics Letters, Vol. 85, NO. 10, pp. 1766-1768. https://doi.org/10.1063/1.1773620