DOI QR코드

DOI QR Code

Thermal stabilizing effect of Yb3+ Er3+ codoping into TiO2 powder prepared by sol-gel method and its upconversion characteristic

Yb3+ Er3+ ions 동시도핑에 의한 TiO2 분말의 열적 안정성 증가효과와 upconversion 특성 연구

  • Eun, Jong-Won (Division of advanced materials, Hanyang Univ.) ;
  • Oh, Dong-Keun (Division of advanced materials, Hanyang Univ.) ;
  • Kim, Kwang-Jin (Kicet (Korea Institute of ceramic Engineering & Technology) Business Support Division) ;
  • Hong, Tae-Ui (Kicet (Korea Institute of ceramic Engineering & Technology) Business Support Division) ;
  • Jeong, Seong-Min (Kicet (Korea Institute of ceramic Engineering & Technology) Business Support Division) ;
  • Choi, Bong-Geun (Division of advanced materials, Hanyang Univ.) ;
  • Shim, Kwang-Bo (Division of advanced materials, Hanyang Univ.)
  • 은종원 (한양대학교 신소재공학부) ;
  • 오동근 (한양대학교 신소재공학부) ;
  • 김광진 (한국세라믹기술원 기업협력센터) ;
  • 홍태의 (한국세라믹기술원 기업협력센터) ;
  • 정성민 (한국세라믹기술원 기업협력센터) ;
  • 최봉근 (한양대학교 신소재공학부) ;
  • 심광보 (한양대학교 신소재공학부)
  • Received : 2010.07.28
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

Thermal stabilizing effect of $Yb^{3+},\;Er^{3+}$ codoping into $TiO_2$ powder prepared by sol-gel method and its upconversion characteristics were analyzed. The effect of $TiO_2:Yb^{3+},\;Er^{3+}$ ions on crystallinity and phase transition was studied by X-ray diffraction (XRD). The change of band-gap energy induced from Yb and Er codoping was analyzed by UV-Vis. The band-gap energy of $TiO_2$ have been slightly narrowed by $Yb^{3+},\;Er^{3+}$ codoping, which indicated that the $Yb^{3+},\;Er^{3+}$ ions can enhance the photo-catalytic property of $TiO_2$. green and red up-conversions of $Yb^{3+}$ and $Er^{3+}$ co-doped $Y_2O_3:Yb^{3+},\;Er^{3+}$ phosphor were analyzed by PL equipped with 980 nm laser.

Sol-gel method로 합성한 anatase상의 $TiO_2$와 Yb와 Er을 codoping한 $TiO_2:Yb^{3+},\;Er^{3+}$ 파우더의 열적안정성과 이에 따른 광촉매 특성의 변화를 비교하였다. XRD 분석을 통하여 $TiO_2$ 결정성 및 상변화에 $Yb^{3+},\;Er^{3+}$ ions이 미치는 영향을 온도에 따라 비교하였으며 anatase $TiO_2$와 rutile $TiO_2$의 광학적 성질을 UV-Vis을 통하여 비교하였다. UV-Vis 분석결과 anatase $TiO_2:Yb^{3+},\;Er^{3+}$ ions도핑에 의하여 $TiO_2$의 밴드갭이 미세하게 감소함을 확인하였고 이를 통해 광촉매 작용을 향상시킬 수 있음을 확인하였다. $Yb^{3+}$ 이온과 $Er^{3+}$ 이온이 도핑된 $TiO_2:Yb^{3+},\;Er^{3+}$ 파우더를 980 nm에서 PL 분석하여 녹색 및 적색 형광을 하는 up-converting 형광특성을 분석하였다.

Keywords

References

  1. A. Fujishima and K. Honsa, "Electrochemical photolysis of water at a semiconductor electrode", Nature 238 (1972) 37. https://doi.org/10.1038/238037a0
  2. A.L. Linsebigler, G. Lu and J.T. Yates, "Photocatalysis on $TiO_2$ surfaces: Principles, mechanisms, and selected results", Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  3. X. Qui and C. Burda, "Chemically synthesized nitrogendoped metal oxide nanoparticles", Chem. Phys. 339 (2007) 1. https://doi.org/10.1016/j.chemphys.2007.06.039
  4. S. Wendt, P.T. Sprunger, E. Lira, G.K.H.M. Madsen, Z. Li, J. Hansen, J. Mathiensen, A. Blekinge-Rasmussen, E. Laegsgaard, B. Hammer and F. Besenbacher, "The role of interstitial sites in the Ti3d defect state in the band gap of titania", Science 320 (2008) 1755. https://doi.org/10.1126/science.1159846
  5. M.A. Henderson, J.M. White, K. Uetsuka and H. Onishi, "Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor", J. Am. Chem. Soc. 125 (2003) 14974. https://doi.org/10.1021/ja037764+
  6. Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout and James L. Gole, "Enhanced nitrogen doping in $TiO_2$ Nanoparticles", itrogen-Doped Nanostructured Titania Electrode" Nano Letter 3(8) (2003) 1049. https://doi.org/10.1021/nl034332o
  7. Tingli Ma, Morito Akiyama, Elichi Abe and Isao Imai, "High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode", Nano Letter 5(12) (2005) 2543. https://doi.org/10.1021/nl051885l
  8. Cristiana Di Valentin, Gianfranco Pacchioni and Annabella Selloni, "Reduced and n-type doped $TiO_2$: Nature of $Ti^{3+}$ species", J. Phys. Chem. C 113 (2009) 20543. https://doi.org/10.1021/jp9061797
  9. Tushar C. Jagadale, Shrikant P. Takale, Ravindra S. Sonawane, Hrushikesh M. Joshi, Shankar I. Patil, Bharat B. Kale and Satishchandra B. Ogale. "N-Doped $TiO_2$ nanoparticle based visible light photocatalyst by modified peroxide sol-gel method" J. Phys. Chem. C 112 (2008) 14595. https://doi.org/10.1021/jp803567f
  10. Qi Li, Trongcai Xie, Yin Wai Li, Eric A. Mintz and Jian Ku Shang, "Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide", Environ. Sci. Technol. 41 (2007) 5050. https://doi.org/10.1021/es062753c
  11. Yanqin Gai, Jingbo Li, Shu-Shen Li, Jian-Bai Xia and Su-Huai Wei, "Design of narrow-gap $TiO_2$: A passivated codoping approach for enhanced photoelectrochemical activity", PRL 102 (2009) 036402. https://doi.org/10.1103/PhysRevLett.102.036402
  12. Qingkun Shang, Hui Yu, Xianggui Kong, Hongdan Wang, Xin Wang, Yajuan Sun, Youlin Zhang, Qinghui Zeng, "Green and red up-conversion emissions of $Er^{3+} ,Yb^{3+}$ Co-doped $TiO_2$ nanocrystals prepared by solgel method", Journal of Luminescence 128 (2008) 1211. https://doi.org/10.1016/j.jlumin.2007.11.097
  13. G.B. Song, J.K. Liang, F.S. Liu, T.J. Peng and G.H. Rao, "Preparation and phase transformation of anatase-rutile crystals in metal doped $TiO_2$/muscovite nanocomposites", Thin Solid Films 491 (2005) 110. https://doi.org/10.1016/j.tsf.2005.05.035

Cited by

  1. film for photocatalytic function vol.25, pp.6, 2015, https://doi.org/10.6111/JKCGCT.2015.25.6.280
  2. by simple solid state method vol.26, pp.4, 2016, https://doi.org/10.6111/JKCGCT.2016.26.4.159