Skin Damage Sustained During Head-and-Neck and Shoulder Radiotherapy Due to the Curvature of Skin and the Use of Immobilization Mask

머리-목 그리고 어깨의 방사선 치료 시 피부곡면과 고정장치로 인한 피부손상연구

  • Kim, Soo-Kil (Department of Biophysics, Kosin University College of Medicine) ;
  • Jeung, Tae-Sig (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Lim, Sang-Wook (Department of Radiation Oncology, Kosin University College of Medicine) ;
  • Park, Yeong-Mouk (Department of Physics, Kyungsung University) ;
  • Park, Dahl (Department of Radiation Oncology, Pusan National University Hospital)
  • 김수길 (고신대학교 의과대학 생물물리교실) ;
  • 정태식 (고신대학교 의과대학 방사선종양학교실) ;
  • 임상욱 (고신대학교 의과대학 방사선종양학교실) ;
  • 박영목 (경성대학교 물리학과) ;
  • 박달 (부산대학교병원 방사선종양학과)
  • Received : 2010.02.16
  • Accepted : 2010.03.15
  • Published : 2010.03.31

Abstract

The purpose of this study was to measure curvature contour skin dose using radiochromic film and TLD for a conventional open field. We also attempted to quantify the degradation of skin sparing associated with use of immobilization devices for high energy photon beams and to calculate the skin dose with a help of Monte Carlo (MC) simulation. To simulate head-and-neck and shoulder treatment, a cylindrical solid water phantom 11 cm in diameter was irradiated with 6 MV x-rays using $40{\times}40\;cm^2$ field at 100 cm source axis distance (SAD) to the center of the phantom. Aquaplastic mesh mask was placed on the surface of the cylindrical phantom that mimicked relevant clinical situations. The skin dose profile was obtained by taking measurements from $0^{\circ}$ to $360^{\circ}$ around the circumference of the cylindrical phantom. The skin doses obtained from radiochromic film were found to be 47% of the maximum dose of $D_{max}$ at the $0^{\circ}$ beam entry position and 61% at the $90^{\circ}$ oblique beam position without the mask. Using the mask (1.5 mm), the skin dose received was 59% at $0^{\circ}$ incidence and 78% at $80^{\circ}$ incidence. Skin dose results were also gathered using thin thermoluminescent dosimeters (TLD). With the mask, the skin dose was 66% at $0^{\circ}$ incidence and 80% at $80^{\circ}$ incidence. This method with the mask revealed the similar pattern as film measurement. For the treatments of the head-and-neck and shoulder regions in which immobilization mask was used, skin doses at around tangential angle were nearly the same as the prescription dose. When a sloping skin contour is encountered, skin doses may be abated using thinner and more perforated immoblization devices which should still maintain immoblization.

곡면 형태의 피부표면의 방사선량을 방사선크롬 필름과 열형광 선량계를 이용하여 측정하고자 한다. 또한 고정 장치의 사용으로 인한 고에너지 방사선의 피부보존효과의 감쇠를 정량적으로 측정하여 Monte-Carlo 프로그램으로 계산한 값과 비교하고자 한다. 머리-목 그리고 어깨의 곡면 형태를 모의하여 만든 11 cm 직경의 원통 팬텀에 $40{\times}40\;cm^2$의 조사야, SAD 100 cm, 6 MV의 방사선을 쪼였다. 또한 관련된 치료 상황과 유사한 조건으로 만들기 위해 그물망 형태의 고정 마스크를 원통형 팬텀에 씌워서 실험하였다. 원통 팬텀의 원둘레 주위를 따라 $0^{\circ}$에서 $360^{\circ}$까지의 피부선량곡선을 구하였다. 방사선크롬 필름을 이용하여 구한, 정면 입사위치($0^{\circ}$)에서의 피부선량은 최대값 깊이($D_{max}$) 방사선량의 47%, 접선 각도인 $90^{\circ}$에서는 61%로 측정되었다. 1.5 mm의 고정마스크를 씌운 경우 $0^{\circ}$ 입사지점에서는 59%, $80^{\circ}$에서는 78%였다. TLD를 통한 결과는 고정마스크를 씌운 경우 $0^{\circ}$ 입사지점에서는 66%, $80^{\circ}$에서는 80%였고 필름의 경우와 유사한 형태를 보였다. 고정 마스크를 머리-목 그리고 어깨 부위에 부착시켜서 치료를 하는 경우에 접선 부근 각도에서의 피부선량이 치료선량과 거의 같은 값을 보였다. 곡면 부위의 피부에는 고정성을 잃지 않는 범위 안에서 보다 더 얇고 더 구멍이 많이 뚫린 고정마스크를 사용해야 과도한 피부선량을 줄일 수 있을 것으로 사료된다.

Keywords

References

  1. Hsu SH, Roberson PL, Chen Y, Matsh RB, Pierce LJ, Moran JM: Assessment of skin dose for breast chest wall radiotherapy as a function of bolus material. Phys Med Biol 53:2593-2606 (2008) https://doi.org/10.1088/0031-9155/53/10/010
  2. Dogan N, Glasgow GP: Surface and build-up region dosimetry for obliquely incident intensity modulated radiotherapy 6 MV x rays. Med Phys 30:3091-3096 (2003) https://doi.org/10.1118/1.1625116
  3. Higgins PD, Han EY, Yuan JL, Hui S, Lee CK: Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 52:1135-1146 (2007) https://doi.org/10.1088/0031-9155/52/4/018
  4. Gagnon WF, Peterson MD: Comparison of skin doses to large fields using tangential beams from Cobalt-60 gamma rays and 4-MV x rays. Radiology 127:785-788 (1978)
  5. Gerbi BJ, Meigooni AS, Khan FM: Dose buildup for obliquely incident photon beams. Med Phys 14:393-399 (1987) https://doi.org/10.1118/1.596055
  6. Butson MJ, Cheung T, Yu PKN, Price S, Biley M: Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic film. Physica Medica 24:29-33 (2008) https://doi.org/10.1016/j.ejmp.2007.11.001
  7. Mellenberg DE: Dose behind various immobilization and beam-modifying devices. I J Radiation Oncology Biol Phys 32:1193-1197 (1995) https://doi.org/10.1016/0360-3016(94)00371-Q
  8. Baumgartner A, Steurer A, Maringer FJ: Simulation of photon energy spectra from Varian 2100C and 2300C/D Liniacs: Simplified estimates with PENELPOPE Monte Carlo models. App Radiat Isot 67:2007-2012 (2009) https://doi.org/10.1016/j.apradiso.2009.07.010
  9. Gagnon WF: Physical factors affecting absorbed dose to the skin from cobalt-60 gamma rays and 25-MV x rays. Med Phys 6:285-290 (1979)
  10. Quach KY, Morales J, Butson MJ, Rosenfeld AB, Metcalfe PE: Measurement of radiotherapy x-ray skin dose on a chest wall phantom. Med Phys 27:1676-1680 (2000) https://doi.org/10.1118/1.599035