DOI QR코드

DOI QR Code

Two Step on-axis Digital Holography Using Dual-channel Mach-Zehnder Interferometer and Matched Filter Algorithm

  • Lee, Hyung-Chul (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Soo-Hyun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University)
  • Received : 2010.07.19
  • Accepted : 2010.09.30
  • Published : 2010.12.25

Abstract

A new two step on-axis digital holography (DH) is proposed without any assumptions, phase shifting, or complicated optical components. A dual-channel Mach-Zehnder interferometer was employed. Using that setup, the object field can be reconstructed requiring only two step measurements. To eliminate position difference between two charge-coupled device (CCD) cameras, a matched filter algorithm was used. Experimental results are compared to those of the traditional phase shifting technique. The proposed approach can also be applied to single-exposure on-axis DH for real time measurement.

Keywords

References

  1. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). https://doi.org/10.1364/AO.33.000179
  2. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002). https://doi.org/10.1088/0957-0233/13/9/201
  3. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a singleexposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007). https://doi.org/10.1364/JOSAA.24.000163
  4. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999). https://doi.org/10.1364/AO.38.004990
  5. I. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
  6. M. Maleki and A. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. 33, 3243-3253 (1994). https://doi.org/10.1117/12.181248
  7. D. Kim and B. Javidi, “3D object recognition using single exposure on-line digital holography,” Proc. SPIE 6027, 602703-602709 (2006). https://doi.org/10.1117/12.667698
  8. G. Situ, J. Ryle, U. Gopinathan, and J. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711-717 (2008). https://doi.org/10.1364/AO.47.000711
  9. Y. Zhang and X. Zhang, “Reconstruction of a complex object from two in-line holograms,” Opt. Express 11, 572-578 (2003). https://doi.org/10.1364/OE.11.000572
  10. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004). https://doi.org/10.1364/OL.29.001787
  11. J. Liu and T. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250-252 (2009). https://doi.org/10.1364/OL.34.000250
  12. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi inline holograms by phase retrieval algorithm,” Opt. Express 11, 3234-3241 (2003). https://doi.org/10.1364/OE.11.003234
  13. T. Latychevskaia and H. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007). https://doi.org/10.1103/PhysRevLett.98.233901
  14. S. Nakadate and M. Isshiki, “Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram,” Appl. Opt. 36, 281-284 (1997). https://doi.org/10.1364/AO.36.000281
  15. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004). https://doi.org/10.1364/OPEX.12.006184
  16. H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
  17. L. Martinez-Leon, M. Araiza-E, B. Javidi, P. Andres, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express 17, 12900-12909 (2009). https://doi.org/10.1364/OE.17.012900
  18. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasiphase-shifting digital holography,” Appl. Phys. Lett. 85, 1069 (2004). https://doi.org/10.1063/1.1777796
  19. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006). https://doi.org/10.1364/AO.45.002995
  20. Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel optical-path-length-shifting digital holography,” Appl. Opt. 48, 160-167 (2009). https://doi.org/10.1364/AO.48.00H160
  21. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phaseshifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006). https://doi.org/10.1364/AO.45.004873
  22. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176-180 (2010). https://doi.org/10.1007/s10043-010-0031-6
  23. T. Nomura and M. Imbe, “Single-exposure phase-shifting digital holography using a random-phase reference wave,” Opt. Lett. 35, 2281-2283 (2010). https://doi.org/10.1364/OL.35.002281
  24. H. Lee, D. Kim, and S. Kim, “A simple and quantitative alignment procedure between solid state cameras,” Opt. Express 17, 23947-23952 (2009). https://doi.org/10.1364/OE.17.023947

Cited by

  1. Stochastic dual-plane on-axis digital holographic imaging on irregular surfaces vol.55, pp.14, 2016, https://doi.org/10.1364/AO.55.003734
  2. Precise Test Sieves Calibration Method Based on Off-axis Digital Holography vol.15, pp.2, 2011, https://doi.org/10.3807/JOSK.2011.15.2.146
  3. Real-time dual-wavelength digital holographic microscopy based on polarizing separation vol.285, pp.3, 2012, https://doi.org/10.1016/j.optcom.2011.09.044
  4. 3D Holographic Image Recognition by Using Graphic Processing Unit vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.264
  5. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling vol.50, pp.33, 2011, https://doi.org/10.1364/AO.50.006153
  6. Dual-plane in-line digital holography based on liquid crystal on silicon spatial light modulator vol.53, pp.27, 2014, https://doi.org/10.1364/AO.53.00G105
  7. Phase-shifting digital holographic microscopy by using a multi-camera setup vol.42, pp.23, 2017, https://doi.org/10.1364/OL.42.004841
  8. Generalized dual-plane digital holographic imaging method vol.381, 2016, https://doi.org/10.1016/j.optcom.2016.06.065
  9. Coherent noise suppression in digital holography based on flat fielding with apodized apertures vol.19, pp.19, 2011, https://doi.org/10.1364/OE.19.017951
  10. Non-coherent noise reduction in digital holography based on root mean square technique vol.123, pp.23, 2012, https://doi.org/10.1016/j.ijleo.2011.10.015
  11. 2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.354
  12. Dual-reference digital holographic interferometry for analyzing high-density gradients in fluid mechanics vol.43, pp.8, 2018, https://doi.org/10.1364/OL.43.001635