DOI QR코드

DOI QR Code

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree (Department of Chemistry, Korea University) ;
  • Lee, Eun-Ah (Department of Chemistry, Korea University) ;
  • Yi, Cheol-Woo (Department of Chemistry, Sungshin Women's University) ;
  • Kim, Ke-On (Department of Chemistry, Korea University)
  • 투고 : 2011.09.17
  • 심사 : 2011.09.25
  • 발행 : 2011.09.30

초록

The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

키워드

참고문헌

  1. S.H. Park, Y. Sato, J.K. Kim and Y.S. Lee, Mater. Chem. Phys., 102, 225 (2007). https://doi.org/10.1016/j.matchemphys.2006.12.008
  2. M. Tabuchi, K. Tatsumi, S. Morimoto, S. Nasu, T. Saito and Y. Ikeda, J. Appl. Phys., 104, 043909 (2008). https://doi.org/10.1063/1.2969665
  3. J.K. Ngala, S. Alia, A. Dobley, V.M.B. Crisostomo and S.L. Suib, Chem. Mater., 19, 229 (2006).
  4. A.D. Robertson and P.G. Bruce, Chem. Mater., 15, 1984 (2003). https://doi.org/10.1021/cm030047u
  5. P.G. Bruce, A.R. Armstrong and R.L. Gitzendanner, J. Mater. Chem., 9, 193 (1999). https://doi.org/10.1039/a803938k
  6. X.K. Huang, Q.S. Zhang, H.T. Chang, J.L. Gan, H.J. Yue and Y. Yang, J. Electrochem. Soc., 156, A162 (2009). https://doi.org/10.1149/1.3054397
  7. S.S. Shin, Y.K. Sun and K. Amine, J. Power Sources, 112, 634 (2002). https://doi.org/10.1016/S0378-7753(02)00439-1
  8. W.X. Zhang, Y. Liu, Z.H. Yang, S.P. Tang and M. Chen, Solid State Commun., 131, 441 (2004). https://doi.org/10.1016/j.ssc.2004.06.007
  9. T. Gao, F. Krumeich, R. Nesper, H. Fjellvag and P. Norby, Inorg. Chem., 48, 6242 (2009). https://doi.org/10.1021/ic900565m
  10. F. Capitaine, P. Gravereau and C. Delmas, Solid State Ionics, 89, 197 (1996). https://doi.org/10.1016/0167-2738(96)00369-4
  11. S.L.S. Doron Levin, and Jakie Y. Ying, American Chemical Society, 622, 237 (1996).
  12. A. Boulineau, L. Croguennec, C. Delmas and F. Weill, Solid State Ionics, 180, 1652 (2010). https://doi.org/10.1016/j.ssi.2009.10.020
  13. P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 80, 103 (1999). https://doi.org/10.1016/S0378-7753(99)00066-X
  14. Y. Sun, Y. Shiosaki, Y. Xia and H. Noguchi, J. Power Sources, 159, 1353 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.037
  15. M.H. Rossouw and M.M. Thackeray, Mater. Res. Bull., 26, 463 (1991). https://doi.org/10.1016/0025-5408(91)90186-P
  16. L. Croguennec, P. Deniard and R. Brec, J. Electrochem. Soc., 144, 3323 (1997). https://doi.org/10.1149/1.1838013

피인용 문헌

  1. Suppression of interface reaction of LiCoO2 thin films by Al2O3-coating vol.29, pp.1, 2012, https://doi.org/10.1007/s10832-012-9732-5
  2. Electrochemical properties of Co-less layered transition metal oxide as high energy cathode material for Li-ion batteries vol.31, pp.5, 2014, https://doi.org/10.1007/s11814-014-0046-y
  3. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries vol.7, pp.1, 2013, https://doi.org/10.1021/nn305065u
  4. Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries vol.8, pp.39, 2016, https://doi.org/10.1021/acsami.6b08835
  5. Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3 vol.30, pp.3, 2013, https://doi.org/10.1007/s10832-012-9778-4
  6. Direct bromination of hydrocarbons catalyzed by Li2MnO3 under oxygen and photo-irradiation conditions vol.3, pp.7, 2013, https://doi.org/10.1039/c2ra22197g
  7. Microwave-assisted hydrothermal synthesis of electrochemically active nano-sized Li2MnO3 dispersed on carbon nanotube network for lithium ion batteries vol.591, 2014, https://doi.org/10.1016/j.jallcom.2013.12.206
  8. Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery vol.281, 2015, https://doi.org/10.1016/j.ssi.2015.09.008