DOI QR코드

DOI QR Code

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+

고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향

  • Won, Hyung-Seok (Chungnam National University Department of nano materials) ;
  • Hayk, Nersisyan (Chungnam National University Department of nano materials) ;
  • Won, Chang-Whan (Chungnam National University Department of nano materials) ;
  • Won, Hyung-Il (Chungnam National University Department of nano materials)
  • 원형석 (충남대학교 공과대학 나노신소재공학과) ;
  • ;
  • 원창환 (충남대학교 공과대학 나노신소재공학과) ;
  • 원형일 (충남대학교 공과대학 나노신소재공학과)
  • Received : 2011.09.26
  • Accepted : 2011.10.28
  • Published : 2011.11.27

Abstract

The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Keywords

References

  1. K. Zhang, H. Z. Liu, Y. T. Wu and W. B. Hu, J. Alloy. Comp., 453, 265 (2008). https://doi.org/10.1016/j.jallcom.2006.11.101
  2. V. Lupei, J. Alloys Comp., 451, 52 (2008). https://doi.org/10.1016/j.jallcom.2007.04.130
  3. M. Nakielska, J. Sarnecki, M. Malinowski and R. Piramidowicz, J. Alloys Comp., 451, 190 (2008). https://doi.org/10.1016/j.jallcom.2007.04.174
  4. J. G. Li, T. Ikegami, J. H. Lee, T. Mori and Y. Yajima, J. Mater. Res., 15, 1864 (2000). https://doi.org/10.1557/JMR.2000.0269
  5. Y. Sang, H. Liu, Y. Lv, J. Wang, T. Chen, D. Liu, X. Zhang, H. Qin, X. Wang and R. I. Boughton, J. Alloy. Comp., 490, 459 (2010). https://doi.org/10.1016/j.jallcom.2009.10.044
  6. X. D. Zhang, H. Liu, W. He, J. Y. Wang, X. Li and R. I. Boughton, J. Cryst. Growth, 275, e1913 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.274
  7. Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, P. Liu and F. Bu, J. Alloy. Comp., 472, 576 (2009). https://doi.org/10.1016/j.jallcom.2008.05.031
  8. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri and K. Arai, Mater. Res. Bull., 38, 1257 (2003). https://doi.org/10.1016/S0025-5408(03)00088-6
  9. H. Yang, L. Yuan, G. Zhu, A. Yu and H. Xu, Mater. Lett., 63, 2271 (2009). https://doi.org/10.1016/j.matlet.2009.07.012
  10. J. H. In, H. C. Lee, M. J. Yoon, K. K. Lee, J. W. Lee and C. H. Lee, J. Supercrit. Fluids, 40, 389 (2007). https://doi.org/10.1016/j.supflu.2006.08.006
  11. M. J. Yoon, J. H. In, H. C. Lee and C. H. Lee, Korean J. Chem. Eng., 23, 842 (2006). https://doi.org/10.1007/BF02705938
  12. Q. X. Zheng, B. Li, H. D. Zhang, J. J. Zheng, M. H. Jiang and X. T. Tao, J. Supercrit. Fluids, 50, 77 (2009). https://doi.org/10.1016/j.supflu.2009.04.002
  13. Y. Li, J. Zhang, Q. Xiao and R. Zeng, Mater. Lett., 62, 3787 (2008). https://doi.org/10.1016/j.matlet.2008.03.061
  14. X. Li and W. Wang, Powder Tech., 196, 26 (2009). https://doi.org/10.1016/j.powtec.2009.06.013
  15. L. Mancic, K. Marinkovic, B. A. Marinkovic, M. Dramicanin, O. Milosevic, J. Eur. Ceram. Soc., 30, 577 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.037
  16. S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo and Y. C. Kang, J. Alloy. Comp., 477, 776 (2009). https://doi.org/10.1016/j.jallcom.2008.10.154
  17. M. Suarez, A. Fernandez, J. L. Menendez and R. Torrecillas, J. Alloy. Comp., 493, 391 (2010). https://doi.org/10.1016/j.jallcom.2009.12.108
  18. M. L. Saladino, G. Nasillo, D. C. Martino and E. Caponetti, J. Alloy. Comp., 491, 737 (2010). https://doi.org/10.1016/j.jallcom.2009.11.054
  19. L. Yang, T. Lu, H. Xu and N. Wei, J. Alloy. Comp., 484, 449 (2009). https://doi.org/10.1016/j.jallcom.2009.04.123
  20. H. Jiao, Q. Ma, L. He, Z. Liu and Q. Wu, Powder Tech., 198, 229 (2010). https://doi.org/10.1016/j.powtec.2009.11.011