DOI QR코드

DOI QR Code

Piezoelectric Energy Harvesting from Bridge Vibrations under Railway Loads

철도하중에 의한 교량 진동을 이용한 압전 에너지 수확

  • Received : 2010.12.01
  • Accepted : 2011.05.02
  • Published : 2011.08.31

Abstract

This paper investigates the applicability of a piezoelectric cantilever for energy supply of wireless sensor node used in structural health monitoring of bridges. By combining the constitutive equation of piezoelectric material and the dynamic equation of cantilever structure, the coupled governing equation for cantilever equipped piezoelectric patches has been addressed in matrix form. Forced excitation tests were carried out to validate the numerical model and to investigate the power output characteristics of the energy harvester. From the numerical simulation based on the measured bridge accelerations under KTX, Saemaul, Mugunghwa trains, the peak powers generated from the device were found to be 28.5 mW, 0.65 mW, 0.51 mW respectively. It is revealed from the results that bridge vibrations caused by moving loads is not a practical source for energy harvesting because of its low acceleration level, low frequency and short duration.

본 연구에서는 교량의 진동을 이용한 압전 외팔보 에너지 수확장치의 적용성을 연구하였다. 이를 위하여 압전 소자의 구성방정식과 외팔보의 진동방정식을 결합하여 외팔보의 단일 모드에 대한 연성 방정식을 행렬 형태로 구성하였다. 그리고 에너지 수확장치의 가진기 실험을 통하여 해석 모델의 타당성을 검증하였다. KTX, 새마을, 무궁화 열차가 주행할 때 측정된 교량 가속도를 바탕으로 수치해석을 통하여 산정한 에너지 수확장치의 최대 전력은 각각 28.5 mW, 0.65 mW, 0.51 mW로 나타났다. 이를 볼 때 철도와 같은 이동하중에 의한 교량의 진동은 가진 진동수와 가속도가 낮고 지속시간이 짧아서 에너지 공급원으로서 효율성이 떨어지는 것으로 판단된다.

Keywords

References

  1. 전법규, 김남식, 김성일(2008) 진동사용성을 고려한 철도교량구조물의 강성한계 분석, 한국철도학회논문집, 한국철도학회, 제11권 제5호, pp. 489-498.
  2. Ajitsaria, A., Choe, S.Y., Shen, D., and Kim, D.J. (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Material and Structures, Vol. 16, pp. 447-454. https://doi.org/10.1088/0964-1726/16/2/024
  3. Anton, S.R. and Sodano, H.A. (2007) A review of power harvesting using piezoelectric materials (2003-2006), Smart Materials and Structures, Vol. 16, pp. R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01
  4. Beeby, S.P., Tudor, M.J., and White, N.M. (2006) Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, Vol. 17, pp. R175-R195. https://doi.org/10.1088/0957-0233/17/12/R01
  5. duToit, N.E., Wardle, B.L., and Kim, S.K. (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters, Integrated Ferroelectrics, Vol. 71, pp. 121-160. https://doi.org/10.1080/10584580590964574
  6. Erturk, A. and Inman, D.J. (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, J. of Intelligent Material Systems and Structures, Vol. 19, pp. 1311-1325. https://doi.org/10.1177/1045389X07085639
  7. Erturk, A., Renno, J.M., and Inman, D.J. (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs, J. of Intelligent Material Systems and Structures, Vol. 20, pp. 529-544. https://doi.org/10.1177/1045389X08098096
  8. Kim, M., Hoegen, M., Dugundji, J., and Wardle, B.L. (2010) Modeling and experimental verification of proof mass effects on vibration energy harvester performance, Smart Material and Structures, Vol. 19, pp. 1-21.
  9. Kwark, J.W., Choi, E.S., Kim, Y.J., Kim, B.S., Kim, S.I. (2004) Dynamic behavior of two-span continuous concrete bridges under moving high-speed train, Computers and Structures, Vol. 82, pp. 463-474. https://doi.org/10.1016/S0045-7949(03)00054-3
  10. Liao, Y. and Sodano, H.A. (2008) Model of a single mode energy harvester and properties for optimal power generation, Smart Material and Structures, Vol. 17, pp. 1-14.
  11. Liao, Y. and Sodano, H.A. (2009) Structural effects and energy conversion efficiency of power harvesting, J. of Intelligent Material Systems and Structures, Vol. 20, pp. 505-514. https://doi.org/10.1177/1045389X08099468
  12. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., and Green, T.C. (2008) Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE, Vol. 96, No. 9, pp. 1457-1486. https://doi.org/10.1109/JPROC.2008.927494
  13. Paz, M. and Leigh W. (2003) Structural Dynamics, Springer.
  14. Priya, S. and Inman, D.J., ed. (2009) Energy Harvesting Technologies, Springer.
  15. Smart Material (2010) .
  16. Sodano, H.A., Inman, D.J., and Park, G. (2004) A review of power harvesting from vibration using piezoelectric materials, The Shock and Vibration Digest, Vol. 36, No. 3, pp. 197-205. https://doi.org/10.1177/0583102404043275
  17. Sodano, H.A., Inman, D.J., and Park, G. (2004) Estimation of electric charge output for piezoelectric energy harvesting, J. of Strain, Vol. 40, pp. 49-58. https://doi.org/10.1111/j.1475-1305.2004.00120.x
  18. Wang, Q.M., Du, X.H., Xu, B., and Cross, L.C. (1999) Theoretical analysis of the sensor effect of cantilever piezoelectric benders, J. of Applied Physics, Vol. 85, No. 3, pp. 1702-1712. https://doi.org/10.1063/1.369314