DOI QR코드

DOI QR Code

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis

잔차시계열 분석을 통한 비정상성 강우빈도해석

  • 장선우 (한양대학교 대학원 건설환경공학과) ;
  • 서린 (한양대학교 대학원 건설환경공학과) ;
  • 김태웅 (한양대학교 건설환경공학과) ;
  • 안재현 (서경대학교 토목공학과)
  • Received : 2011.04.11
  • Accepted : 2011.08.11
  • Published : 2011.10.31

Abstract

Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

최근 기후변화/변동으로 인한 집중호우가 증가하여 수문기상재해에 따른 피해가 증가하고 있다. 미래의 발생가능한 극한 강우사상에 대응하기 위해, 일반적으로 수문학적 빈도해석을 이용하여 목표연도의 설계 강우량을 산정한다. 이것은 수문빈도 해석에 적용된 강우자료가 정상성임을 가정하여 설계 강우량을 산정하는 것이다. 하지만, 최근 관측된 강우자료를 살펴보면, 통계적 특성이 시간에 따라 변하는 경우가 있다. 본 연구는 연최대강우량의 회귀직선에 대한 잔차의 수문학적 빈도해석을 바탕으로, 가까운 미래로 설정된 목표연도의 확률강우량을 산정하는 방법을 제안하였다. 현재까지의 관측자료를 기초로 선형회귀식의 추세선을 이용하여 잔차 시계열을 생성하고, 잔차에 대한 확률밀도함수를 추정한 후, 추세선의 증가 및 감소 경향을 고려하여 확률강우량을 산정하였다. 14개의 강우관측지점에 적용한 결과, 증가경향을 보이는 경우에는 현시점까지의 자료에 대한 선형회귀식을 산정한 후, 목표연도까지 연장했을 때의 추세요소를 산정한 방법이 보다 적합한 확률강우량을 산정하는 것으로 나타났다. 이러한 결과는 정상성을 바탕으로 추정한 확률강우량과 비교했을 때, 5-25%의 예측편차가 1-22% 정도로 감소하였다.

Keywords

References

  1. 건설교통부(2000) 1999년도 수자원관리기법개발 연구조사 보고서, 제 1권 한국 확률강우량도 작성. 건설교통부.
  2. 권영문, 박진원, 김태웅(2009) 강우량의 증가 경향성을 고려한 목표연도 확률강우량 산정, 대한토목학회논문집, 대한토목학회, 제29권, 제2B호, pp. 131-139.
  3. 권현한, 김병식(2009) 비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발. 한국수자원학회논문집, 한국수자원학회, 제42권, 3호, pp. 213-225.
  4. 안재현, 김태웅, 유철상, 윤용남(2000) 자료기간 증가에 따른 확률강우량의 거동특성 분석, 한국수자원학회논문집, 한국수자원학회, 제33권, 5호, pp. 569-580.
  5. 오제승, 김치영, 김원(2007) 강우자료의 변동 특성 분석. 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 1602-1607.
  6. 이상복, 김경덕, 허준행(2004) 강수자료에 대한 변동성 및 경향성 해석, 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 696-700.
  7. 이정주, 권현한, 황규남(2010) 극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석, 한국수자원학회논문집, 한국수자원학회, 제43권, 8호, pp. 733-745.
  8. 이창환, 안재현, 김태웅(2010a) 비정상성 강우빈도해석법에 의한 확률강우량의 평가. 한국수자원학회논문집, 한국수자원학회, 제43권, 2호, pp. 187-199.
  9. 이창환, 김태웅, 경민수, 김형수(2010b) BCM 모의 결과를 반영한 목표연도 확률강우량 산정. 대한토목학회논문집, 대한토목학회, 제30권 제3B호, pp. 269-276.
  10. 정종호, 윤용남(2007) 수자원설계실무. 구미서관
  11. Conover, W.J. (1971) Practical Nonparametric Statistics. John Wiley & Sons.
  12. Cunderlik, J.M. and Burn, D.H. (2003) Non-stationary pooled flood frequency analysis. Journal of Hydrology, Vol. 276, pp. 210-223. https://doi.org/10.1016/S0022-1694(03)00062-3
  13. Franks, S.W. and Kuczera, G. (2002) Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales. Water Resources Research, Vol. 38, No. 5, DOI: 10.1029/2001WR000232.
  14. Gellens, D. and Roulin, E. (1998) Streamflow response of Belgian catchment to IPCC climate change scenario. Journal of Hydrology, Vol. 210, pp. 242-258. https://doi.org/10.1016/S0022-1694(98)00192-9
  15. Hayter, A.J. (2007) Probability and Statistics for Engineers and Scientists. Thomson Learning.
  16. He, Y., Brdossy, A., and Brommundt, J. (2006) Non-stationary flood frequency analysis insouthern Germany, The 7th International Conference on Hydro Science and Engineering, Philadelphia, USA.
  17. IPCC (2007) WGI Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  18. Jain, S. and Lall, U. (2000) Magnitude and timing of annual maximum floods: Trend and large-scale climatic associations for the Blacksmith Fork River, Utah. Water Resources Research, Vol. 36, No. 12, pp. 3641-3651. https://doi.org/10.1029/2000WR900183
  19. Jain, S. and Lall, U. (2001) Floods in a changing climate: Does the past represent the future? Water Resources Research, Vol. 37, No. 12, pp. 3193-3205. https://doi.org/10.1029/2001WR000495
  20. Kite, G.W. (1993) Application of a land class hydrological model to climate change. Water Resource Research, Vol. 29, No. 7, pp. 2377-2384. https://doi.org/10.1029/93WR00582
  21. Mann, H.B. (1945) Nonparametric tests against trend. Econometrica, Vol. 13, pp. 245-259. https://doi.org/10.2307/1907187
  22. Mirza. M.Q., Warrick, R.A., Ericksen, N.J., and Kenny, K.J. (1998) Trend and persistence in precipitation in the Ganges, Brahmaputa and Meghna basin in the south Asia, Hydrological Sciences- Journal, Vol. 43, No. 6, pp. 845-858. https://doi.org/10.1080/02626669809492182
  23. Sankarasubramanian, A. and Lall, U. (2003) Flood quantiles in a changing climate: Seasonal forecasts and causal relations, Water Resources Research, Vol. 39, No. 5, DOI: 10.1029/ 2002WR001593.
  24. Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, E. (1993) Frequency analysis of extreme events, Handbook of Hydrology, D. Maidment, ed., McGraw-Hill, New York, pp. 18.1-18.66.
  25. Sugahara, S., Rocha R.P.da., and Silveira, R. (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil, International Journal of Climatology, Vol. 29, pp. 1339-1349. https://doi.org/10.1002/joc.1760