DOI QR코드

DOI QR Code

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect

2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장

  • Kim, Tae-Un (Department of Materials Science and Engineering, Photonics and Optical Technology Research Institute, Chonnam National University) ;
  • Moon, Jong-Ha (Department of Materials Science and Engineering, Photonics and Optical Technology Research Institute, Chonnam National University) ;
  • Kim, Seon-Hoon (Photonics Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Kim, Doo-Gun (Photonics Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Kim, Jin-Hyeok (Department of Materials Science and Engineering, Photonics and Optical Technology Research Institute, Chonnam National University)
  • 김태언 (전남대학교 신소재공학부 광전자재료실험실) ;
  • 문종하 (전남대학교 신소재공학부 광전자재료실험실) ;
  • 김선훈 (한국광기술원 광융합시스템연구센터) ;
  • 김두근 (한국광기술원 광융합시스템연구센터) ;
  • 김진혁 (전남대학교 신소재공학부 광전자재료실험실)
  • Received : 2011.09.08
  • Accepted : 2011.11.22
  • Published : 2011.12.27

Abstract

Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

Keywords

References

  1. H. S. Lee, K. H. Kim, I. H. Lee, C. S. Kee and H. J. Lim, Prospectives of Industrial Chemistry, 6(4), 73 (2003) (in Korean).
  2. S. Kedia, R. Vijaya, A. K. Ray, S. Sinha, Opt. Mater., 33, 466 (2011). https://doi.org/10.1016/j.optmat.2010.10.020
  3. Y. Y. Xiong, F. Kang, Zheng Ke, S. Y. Zhuo, C. F. Liang and Z. Zhang, J. Cryst. Growth, 312, 2484 (2010). https://doi.org/10.1016/j.jcrysgro.2010.05.029
  4. E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
  5. M. A. Mastro, L. Mazeina, B.-J. Kim, S. M. Prokes, J. Hite, C. R. Eddy Jr. and J. Kim, Photonics and Nanostructures, 9, 91 (2011). https://doi.org/10.1016/j.photonics.2010.12.001
  6. S. Kedia, R. Vijaya, A. K. Ray, S. Sinha and K. Dasgupta, Pramana - Journal of Physics, 75(5), 975 (2010). https://doi.org/10.1007/s12043-010-0184-7
  7. Y. Zhong, Z. Yue, G. K. L. Wong, Y. Y. Xi, Y. F. Hsu, A. B. Djuriši , J. -W. Dong, W. -J. Chen and K. S. Wong, Appl. Phys. Lett., 97, 191102 (2010). https://doi.org/10.1063/1.3499274
  8. L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando and D. Golberg, J. Mater. Chem., 21, 40 (2011). https://doi.org/10.1039/c0jm02230f
  9. H. Wang, K. P. Yan, J. Xie and M. Duan, Mater. Sci. Semicond. Process., 11, 44 (2008). https://doi.org/10.1016/j.mssp.2008.08.005
  10. P. N. Prasad, Nanophotonics, p. 246-252, John Wiley & Sons, USA (2004).
  11. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto and Y. Arakawa, Nat. Photon., 2, 688 (2008). https://doi.org/10.1038/nphoton.2008.202
  12. S. -H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano and K. Komori, J. Opt. Soc. Am. B, 24(8), 1951 (2007). https://doi.org/10.1364/JOSAB.24.001951
  13. T. -U. Kim, J. -A Kim, S. M. Pawar, J. -H. Moon and J. H. Kim, Cryst. Growth Des., 10, 4256 (2010). https://doi.org/10.1021/cg901223t