DOI QR코드

DOI QR Code

SEMIGROUP RINGS AS H-DOMAINS

  • Received : 2011.05.12
  • Accepted : 2011.08.05
  • Published : 2011.09.30

Abstract

Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type (0, 0, 0, ${\ldots}$), and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a $v$-ideal. We also show that if $\mathbb{R}$ is the eld of real numbers and if ${\Gamma}$ is the additive group of rational numbers, then $\mathbb{R}[{\Gamma}]$ is not an H-domain.

Keywords

References

  1. D.F. Anderson and G.W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), 527-544. https://doi.org/10.1016/j.jalgebra.2005.03.007
  2. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
  3. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  4. R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago, Chicago, 1984.
  5. R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86. https://doi.org/10.1307/mmj/1029001210
  6. S. Glaz and W.V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), 325-341. https://doi.org/10.1007/BF01168220
  7. F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Dekker, New York, 1998.
  8. E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), 291-300. https://doi.org/10.1307/mmj/1029003756
  9. B.G. Kang, Prufer v-multiplication domains and the ring R[X]$N_v$ , J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  10. M.H. Park, Group rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), 301-318. https://doi.org/10.1016/S0022-4049(00)00160-2
  11. M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian Commutative Ring Theory, Math. Appl. Kluwer Acad. Publ. Dordrecht 520 (2000), 429-457.