DOI QR코드

DOI QR Code

Molecular Motions of [N(C2H5)4]+ and [N(CH3)4]+ ions by 1H Nuclear Magnetic Resonance Relaxation in [N(C2H5)4]2CoCl4 and [N(CH3)4]2CoCl4 Single Crystals

  • Yoon, Su-A (Department of Science Education, Jeonju University) ;
  • Lim, Ae-Ran (Department of Science Education, Jeonju University)
  • Received : 2011.11.08
  • Accepted : 2011.12.01
  • Published : 2011.12.20

Abstract

The line widths and spin-lattice relaxation times of protons in $[N(C_2H_5)_4]_2CoCl_4$ and $[N(CH_3)_4]_2CoCl_4$ single crystals were investigated in the temperature range 160-400 K. The temperature dependences of the spin-lattice relaxation times are attributed to the molecular motions of the ethyl and methyl groups in the $[N(C_2H_5)_4]^+$ and $[N(CH_3)_4]^+$ ions respectively. The NMR line widths indicate that the ethyl groups in $[N(C_2H_5)_4]_2CoCl_4$ have one more degree of freedom than the methyl groups in $[N(CH_3)_4]_2CoCl_4$. The experimental results are interpreted in terms of the reorientations of the methyl and ethyl groups.

Keywords

References

  1. J. Berger, J.P. Benoit, C.W. Garland, P.W. Wallace, J. Phys. 47, 483, (1986). https://doi.org/10.1051/jphys:01986004703048300
  2. A.P. Levanyuk, in: R. Blinc, A.P. Levanyuk (Eds.), "Incommensurate Phases in Dielectrics, Part I, Fundamentals", North-Holland, Amsterdam, (1986).
  3. P. Biskupski, Z. Tylczynski, M. Slaboszewska, Ferroelectrics Letters 28, 55, (2001). https://doi.org/10.1080/07315170108202949
  4. Z. Tylczynski, P. Biskupski, M. Slaboszewska, Ferroelectrics 272, 315, (2002). https://doi.org/10.1080/713716258
  5. G. Madariaga, F.J. Zuniga, J.M. Perez-Mato, M.J. Tello, Acta Cryst. B43, 356, (1987).
  6. G.D. Stucky, J.B. Folkers, T.J. Kistenmacher, Acta Cryst. 23, 1064, (1967). https://doi.org/10.1107/S0365110X67004268
  7. S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, M. Matsuo, Phys. Lett. A67, 56, (1978).
  8. J.R. Wiesner, R.C. Stivastava, C.H.L. Kennard, M. Divaira, E.C. Lingafelter, Acta Cryst. 23, 565, (1967). https://doi.org/10.1107/S0365110X67003214
  9. A.R. Lim, W.K. Jung, J. Phys. Chem. Solids 66, 1795, (2005). https://doi.org/10.1016/j.jpcs.2005.07.011
  10. A.R. Lim, J. Phys. Chem. Solids 66, 973, (2005). https://doi.org/10.1016/j.jpcs.2005.01.001
  11. A.R. Lim, K.Y. Lim, J. Phys. Chem. Solids 68, 576, (2007). https://doi.org/10.1016/j.jpcs.2007.01.033
  12. A.J. Wolthuis, W.J. Huiskamp, L.J.de Jongh, Physica. B142, 301, (1986).
  13. M. Kahrizi, M.O. Steinitz, Solid State Commun. 74, 333, (1990). https://doi.org/10.1016/0038-1098(90)90497-Y
  14. M.A. Kandhaswamy, V. Srinivasan, Bull. Mat. Sci. 25, 41, (2002). https://doi.org/10.1007/BF02704593
  15. A. Abragam, "The Principles of Nuclear Magneism" Oxford University Press, Cambridge, (1997).
  16. B. Cowan, "Nuclear Magnetic Resonance and Relaxation" Cambridge University Press,Cambridge, (1997).
  17. I. Bertini, C. Luchinat, G. Parigi, "Solution NMR of Paramagnetic Molecules" Elsevier Science B. V., Amsterdam, (2001).