DOI QR코드

DOI QR Code

혐기성 필터를 이용한 맥주 폐수 처리에서 메탄 생산 특성

Characteristics of methane production for treatment of brewery wastewater using anaerobic filter

  • 최영기 (연세대학교 환경공학부) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 정형근 (연세대학교 환경공학부) ;
  • 정태영 (연세대학교 환경공학부)
  • Choi, Young-Ki (Division of Environmental Engineering, Yonsei University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Chung, Hyung Keun (Division of Environmental Engineering, Yonsei University) ;
  • Jeong, Tae-Young (Division of Environmental Engineering, Yonsei University)
  • 투고 : 2011.07.27
  • 심사 : 2011.09.24
  • 발행 : 2011.09.30

초록

본 연구에서는 맥주 생산 공정에서 발생되는 고농도 유기성 폐수를 처리하는데 혐기성 필터를 사용하였다. 전체 운전 기간 동안, 메탄 생산과 맥주 폐액 처리가 효과적으로 이루어졌다. BOD, CODcr, SS, TN, TP의 평균 처리효율은 각각 61.4 %, 60.9 %, 31.4 % 70.7 %, 70.0 %를 나타내었다. 그리고, 전체가스 중 메탄 함량과 메탄 생산량은 각각 68. 8 %와 $0.08{\sim}0.77m^3CH_4/kgCOD$가 됨을 알 수 있었다. 이번 연구를 통하여 개발된 기술은 맥주 폐액 처리와 메탄 생산성 향상에 효과적인 방법으로서 실질적인 혐기 소화 처리로 사용될 수 있을 것이다.

In the present work, the anaerobic filter was used to treat the high concentration of organic wastewater which was produced in the beer production process. During the whole operation periods, wastewater treatment with methane production was effectively performed. The average removal efficiencies of BOD, CODcr, SS, TN and TP were 61.4, 60.9, 31.4, 70.7 and 70.0 %, respectively. Also, methane content in the total gas and methane production amount were 68.8 % and $0.08{\sim}0.77m^3CH_4/kgCOD$, respectively. As a consequence, the practical anaerobic digestion technology developed in this study showed a feasibility of an effective method to treat brewery wastewater with enhancing the methane productivity.

키워드

참고문헌

  1. William D. N., A Review of the Stern Review on the Economics of Climate Change, Journal of Economic Literature, American Economic Association, 45(3), pp. 686-702 (2007). https://doi.org/10.1257/jel.45.3.686
  2. Craig Green, Michigan Law Review, A Failure of Capitalism : The Crisis of '08 and the Descent into Depression, pp. 101-102 (2010).
  3. Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H. and Zhang, T., Changes in Snow, Ice and Frozen Groung, UNEP, pp. 337-383 (2007).
  4. 환경백서, 환경부. (2009).
  5. 정태영, 슬러지의 혐기성소화에 있어서 황산염농도에 따른 메탄생성균과 황산염환원균의 역할, 연세대, 박사학위논문, (2003).
  6. Zvauya R., Parawira W., and Mawadza C., "Aspect of aerobic thermophilic treatment of Zimbabwean traditional opaque-beer brewery wastewater", Bioresource Technology, 48, pp. 273-274 (1994). https://doi.org/10.1016/0960-8524(94)90158-9
  7. Parawira W., Kudita I., Nyandoroh M. G. Zvauya R., "A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with an activated sludge", Process Biochemistry, 40, pp. 593-594 (2005). https://doi.org/10.1016/j.procbio.2004.01.036
  8. 이민선, 맥주폐수 처리를 위한 활성오니 시스템의 운전개선을 위한 실험적 연구, 연세대 석사학위논문. (1991).
  9. APHA, American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 17th edition, Washington, D. C., USA. (1989).