DOI QR코드

DOI QR Code

복합 전처리를 통한 하수슬러지의 가용화 및 생물학적 유용성에 관한 연구

A study for Solubilization and Bioavailability of Sewage Sludge Using the Complex Pre-treatment

  • 강정현 (서울과학기술대학교 환경공학과) ;
  • 이희수 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Kang, Jung-Hyun (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Hee-Soo (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 투고 : 2011.07.28
  • 심사 : 2011.09.24
  • 발행 : 2011.09.30

초록

본 연구에서는 하수슬러지를 전처리 과정을 통해 가용화한 후 혐기성 생물학적 분해를 실시하였다. 산 또는 알칼리 조건과 초음파처리를 복합적으로 적용하여 전처리 후 슬러지의 가용화율을 비교하였으며 알칼리 조건에서 초음파처리를 병행하였을 때 최대 가용화율을 얻을 수 있었다. 가용화된 슬러지의 생물학적 유용성은 복합전처리를 실시한 경우 빠른 생물학적 분해와 더불어 총 가스 발생량은 10배 이상 증가하였으며 가용화된 슬러지에서 바이오가스 생산 가능성을 확인 하였다. 전처리를 실시한 슬러지를 이용하여 생물학적 분해를 실시하였을 때 약 50%정도 높은 수소생성율의 지표가 되는 B/A비를 확인할 수 있었으나 수소생성에 저해가 되는 lactic acid와 propionic acid가 검출되는 것으로 보아 후속연구가 필요할 것으로 판단되었다.

In this study, anaerobic biological decomposition were attempted after solubilization treatment of sewage sludge with the complex pre-treatment (acid/base treatment with ultrasonic radiation). Solubilization ratios were compared for ultrasonic treatment at acid or base condition. Solubilization effect of the complex pre-treatment was more effective at higher pH. Biological decomposition of complex pre-treated sludge was faster than non treated (raw) sludge, showing 10 times higher total gas production. Biological digestion of the sludge shows more biogas production. B/A ratio. which indicates hydrogen production potential, was 50% higher with complex pre-treated sludge than raw sludge but lactic acid or propionic acid were also detected during anaerobic decomposition process.

키워드

참고문헌

  1. 유기영, "서울특별시 하수슬러지 처리현황", 유기성자원학회, 11(1), pp. 25-29 (2003).
  2. 환경부. 2004 하수도통계 (2005).
  3. Li, Y. and Noike, T., "Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment", Wat, Sci. Technol., 26, pp. 857-866 (1992).
  4. Masonn, T., Practical Sonochemistry: User's Guide to Application in Chemistry and Chemical Engineering, Ellis Horword Ltd., (1991).
  5. Young, F. R., Cavitation, McGraw-Hill, pp. 40-76 (1989).
  6. Neeyens, E., Baeyens, J., Dewil, R, and Deheyder, B., "Advanced sludge treatment affects extracellular polymeric substance to improve activated sludge dewatering", J. Hazard, Mater. 106B, pp. 83-92 (2004).
  7. Tiehm. A., Nickel, K., Zellhorn, M. and Neis, U., "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization", Wat. Res., 35(8), pp. 2003-2009 (2001). https://doi.org/10.1016/S0043-1354(00)00468-1
  8. Gronroos, A., Kyllönen, H., Korpijarvi, K., Pirkonen, P., Paavola, T., Jokela, J. and Rintala, J., "Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion," Ultrasonics Sonochemistry, 12, pp. 115-120 (2005). https://doi.org/10.1016/j.ultsonch.2004.05.012
  9. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci, Technol., 36, pp. 2530-2535 (2002). https://doi.org/10.1021/es015783i
  10. Fang, H. H. P. and Liu, H., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, pp. 87-93 (2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  11. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, pp. 695-.699 (2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  12. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances," Anal. Chem., 28(3), pp. 350-.356 (1956). https://doi.org/10.1021/ac60111a017
  13. 김동진, 김혜영, "전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지감량에 미치는 영향", 대한환경공학회, 48(1), pp. 103-109 (2010).
  14. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwn Sung, "Biological hydrogen production: effects of pH and intermediate products," Int. J. Hydrogen Energy, 29, pp. 1123-1131 (2004).
  15. Ginkel, S. V. and Sung, S. H., "Biohydrogen production as a function of pH and substrate concentration," Environ. Sci, Technol., 35, pp. 4726-4730 (2001). https://doi.org/10.1021/es001979r
  16. Bougrier, C., Albasi, C., Delgenes, J. P. and Carrere, H. "Effect of ultrasonic, thermal and ozone pre-treatment on waste activated sludge solubilization and anaerobic digestion", Chem. Eng. Process, 45, pp. 711-718. (2006). https://doi.org/10.1016/j.cep.2006.02.005
  17. 이채영, 박승용. "하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상", 유기성자원학회, 16(3), pp. 83-90 (2008).
  18. Muller, J., Lehne, G., Schwedes, J., Battenberg, S., Näveke, R., Kopp, J., Dichtl, N., Scheminski, A., Krull, R. and Hempel, D. C. "Disintegration of sewage sludges and influence on anaerobic digestion." Wat. Sci. Tech., 38(8-9), pp. 425-433 (1998). https://doi.org/10.1016/S0273-1223(98)00720-3
  19. Leclere, M., Bernalier, A., Donadille, G. and Lelait M., "$H_{2}/CO_{2}$ metabolism in acetogenic bacteria isolated from the human colon," Anaerobe, 3, pp. 307-315 (1997). https://doi.org/10.1006/anae.1997.0117
  20. Morvan, B., Rieu-Lesme, F., Fonty, G. and Gouet, P., "In vitro interactions between rumen $H_{2}$-utilizing acetogenic and sulfate-reducing bacteria," Anaerobe, 2, pp. 175-180 (1996). https://doi.org/10.1006/anae.1996.0023
  21. 이승무, 박주량, 안준수, "유기성 폐기물로부터 혐기성 발효에 의한 알코올 생성에 관한 연구(I)", 한국폐기물자원순환학회, 3(2), pp. 49-64 (1986).