DOI QR코드

DOI QR Code

불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성

Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells

  • 이성규 (충남대학교 정밀응용화학과) ;
  • 임지선 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Lee, Sung Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 투고 : 2011.04.12
  • 심사 : 2011.05.26
  • 발행 : 2011.10.10

초록

본 연구에서는 염료감응형 태양전지의 효율을 향상시키기 위하여 여러 조건에서 $TiO_2$에 불소를 도핑한 후 이를 이용하여 광전극을 제조하고 그 전기화학적 특성을 평가하였다. 불소 도핑된 $TiO_2$를 이용하여 제조된 염료감응형 태양전지의 에너지 전환 효율을 전류-전압 곡선을 통하여 계산하였다. $TiO_2$ 광전극을 불소 도핑함으로써 에너지 전환 효율이 최대 3배 이상 향상되었다. 이와 같은 결과는 불소 도핑 후 에너지 준위가 감소된 $TiOF_2$$TiO_2$와 혼재됨으로써 광전극 내에 용이한 전자 전달이 가능하고 이로 인하여 염료 감응형 태양전지의 효율이 향상된 것으로 여겨진다. 이는 IMPS (intensity-modulated photocurrent spectroscopy) 및 IMVS (intensity-modulated photovoltage spectroscopy) 분석에서도 불소가 도핑됨으로써 전자 전달이 빨라지고, 전자 재결합은 느려지는 결과를 확인할 수 있었다.

In this study, the fluorine doped $TiO_2$ was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped $TiO_2$ was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on $TiO_2$. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of $TiO_2/TiOF_2$ in photoelectrode based on reduced $TiOF_2$ energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on $TiO_2$ in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.

키워드

참고문헌

  1. C. Li, X. Yang, R. Chen, J. Pan, H. Tian, H. Zhu, X. Wang, A. Hagfeldt, and L. Sun, Sol. Energy Mater. Sol. Cells, 91, 1863 (2007). https://doi.org/10.1016/j.solmat.2007.07.002
  2. H. Matsui, K. Okada, T. Kitamura, and N. Tanabe, Sol. Energy Mater. Sol. Cells, 93, 1110 (2009). https://doi.org/10.1016/j.solmat.2009.01.008
  3. J. Chen, C. Li, J. L. Song, X. W. Sun, W. Lei, and W. Q. Deng, Appl. Surf. Sci., 255, 7508 (2009). https://doi.org/10.1016/j.apsusc.2009.03.091
  4. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009). https://doi.org/10.1016/j.apsusc.2009.07.074
  5. J. S. Im, S. K. Lee, and Y. S. Lee, Appl. Surf. Sci., 257, 2164 (2011). https://doi.org/10.1016/j.apsusc.2010.09.066
  6. Z. Tian, M. Huang, B. Zhao, H. Huang, X. Feng, Y. Nie, P. Shen, and S. Tan, Dyes Pigment., 87, 181 (2010). https://doi.org/10.1016/j.dyepig.2010.03.029
  7. M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara, and A. Konno, Sol. Energy Mater. Sol. Cells, 91, 544 (2007). https://doi.org/10.1016/j.solmat.2006.11.008
  8. P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, and L. Sun, Adv. Mater., 21, 2993 (2009). https://doi.org/10.1002/adma.200802461
  9. B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007). https://doi.org/10.1021/ja070804f
  10. C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, Adv. Powder Technol., 22, 31 (2011). https://doi.org/10.1016/j.apt.2010.03.003
  11. A. Kay, and M. Gratzel, Chem. Mater., 14, 2930 (2002). https://doi.org/10.1021/cm0115968
  12. N. G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, and S. H. Chang, Langmuir, 20, 4246 (2004). https://doi.org/10.1021/la036122x
  13. J. P. Guo and M. A. Aegerter, Thin Solid Films, 351, 290 (1999). https://doi.org/10.1016/S0040-6090(99)00215-1
  14. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Angew. Chem. Int. Ed., 47, 2402 (2008). https://doi.org/10.1002/anie.200704919
  15. C. Kim, K. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem., 18, 5809 (2008). https://doi.org/10.1039/b805091k
  16. S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C, 113, 6878 (2009). https://doi.org/10.1021/jp9002017
  17. S. H. Kang, H. S. Kim, J. Y. Kim, and Y. E. Sung, Mater. Chem. Phys., 124, 422 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.059
  18. S. J. Kim, S. M. Yun, H. Kim, and Y. S. Lee, Carbon Lett., 10, 123 (2009). https://doi.org/10.5714/CL.2009.10.2.123
  19. T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett., 5, 2543 (2005). https://doi.org/10.1021/nl051885l
  20. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, and S. Dai, J. Mater. Chem., 21, 863 (2011). https://doi.org/10.1039/c0jm02941f
  21. D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, and N. Ohashi, Chem. Phys. Lett., 401, 579 (2005). https://doi.org/10.1016/j.cplett.2004.11.126
  22. J. He, Q.Z. Cai, Y. G. Ji, H. H. Luo, D. J. Li, and B. Yu, J. Alloy. Compd., 482, 476 (2009). https://doi.org/10.1016/j.jallcom.2009.04.063
  23. J. S. Im, I. J. Park, S. J. In, T. Kim, and Y. S. Lee, J. Fluor. Chem., 130, 1111 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  24. M. V. Jorge, F. R. Claudio, C. Sergio, B. Pedro, and H. L. Victor, Mater. Charact., 58, 233 (2007). https://doi.org/10.1016/j.matchar.2006.04.021
  25. K. Lv, J. Yu, L. Cui, S. Chen, and M. Li, J. Alloy. Compd., 509, 4557 (2011). https://doi.org/10.1016/j.jallcom.2011.01.103
  26. S. Wei, B. Peng, L. Chai, Y. Liu, and Z. Li, Trans. Nonferrous Met. Soc. China, 18, 1145 (2008). https://doi.org/10.1016/S1003-6326(08)60196-X
  27. S. Atul, K. Takashi, and T. Akira, Carbon, 38, 1977 (2000). https://doi.org/10.1016/S0008-6223(00)00045-2
  28. A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, Microporous Mesoporous Mat., 117, 75 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  29. D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, J. Fluor. Chem., 126, 69 (2005). https://doi.org/10.1016/j.jfluchem.2004.10.044
  30. J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, and Y. Huang, J. Power Sources, 195, 6937 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.081
  31. Y. Lee and M. Kang, Mater. Chem. Phys., 122, 284 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  32. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, and O. P. Siclovan, Sol. Energy Mater. Sol. Cells, 90, 1041 (2006). https://doi.org/10.1016/j.solmat.2005.05.019
  33. J. Krulger, R. Plass, M. Graltzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 107, 7536 (2003). https://doi.org/10.1021/jp0348777
  34. L. M. Peter and K. G. U. Wijayantha, Electrochim. Acta, 45, 4543 (2000). https://doi.org/10.1016/S0013-4686(00)00605-8
  35. S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. E. Lindquist, G. A. Niklasson, A. Hagfeldt, and G. Boschloo, J. Electroanal. Chem., 605, 151 (2007). https://doi.org/10.1016/j.jelechem.2007.04.001
  36. W. Guo, L. Wu, Z. Chen, T. Ma, G. Boschloo, and A. Hagfeldt, J. Photochem. Photobiol. A-Chem., 219, 180 (2011). https://doi.org/10.1016/j.jphotochem.2011.01.004
  37. L. Lu, R. Li, K. Fan, and T. Peng, Sol. Energy, 84, 844 (2010). https://doi.org/10.1016/j.solener.2010.02.010
  38. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J. F. Guillemoles, D. Lincot, and F. Decker, Electrochem. Commun., 12, 697 (2010). https://doi.org/10.1016/j.elecom.2010.03.009