DOI QR코드

DOI QR Code

Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts

양파껍질 추출물의 항균, 항산화 및 항노화 효과에 관한 연구

  • Kim, Jung Eun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, A Reum (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, Min Ji (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
  • 김정은 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 김아름 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 김민지 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울과학기술대학교 자연생명과학대학 정밀화학과)
  • Received : 2010.12.07
  • Accepted : 2011.01.13
  • Published : 2011.04.10

Abstract

In this study, the antibacterial, antioxidative and inhibitory effects of Allium cepa peel extracts on tyrosinase and elastase were investigated. MIC values of the ethyl acetate fraction of Allium cepa peel on especially, S. aureus among the skin resident flora (Staphylococcus aureus, S. aureus; Propionibacterium acnes, P. acnes; Pityrosporum ovale, P. ovale; Escherichia coli, E. coli) were 0.06%. The aglycone fraction showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl radical, DPPH) scavenging activity ($FSC_{50}=5.05{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction and aglycone fraction in the luminol-dependent $Fe^{3+}-EDTA/H_2O_2$ system were 0.05 and $0.03{\mu}g/mL$, respectively. The cellular protective effect of the aglycone fraction on the rose-bengal sensitized photohemolysis of human erythrocytes exhibited more prominent (${\tau}_{50}$, 480 min at $25{\mu}g/mL$). The inhibitory effects ($IC_{50}$) of the ethyl acetate fraction and aglycone fraction on tyrosinase were 9.16 and $8.68{\mu}g/mL$, the inhibitory effect ($IC_{50}$) of the aglycone fraction on elastase was $14.12{\mu}g/mL$ The transepidermal water loss of the cream containing 0.1% ethyl acetate fraction was decreased from $8.3g/m^2h$ in control to $6.8g/m^2h$ in the subjects applied with cream containing the ethyl acetate fraction. These results indicate that extract/fractions of Allium cepa peel can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS, and possibly as antiaging agents. Allium cepa peel extract could be used as a new cosmeceutical for whitening and anti-wrinkle products.

본 연구에서는 양파껍질 추출물의 항균, 항산화활성과 tyrosinase 및 elastase 저해활성을 측정하였다. 피부 상재균에 대한 양파껍질 추출물의 항균활성 측정결과, 황색포도상구균(S. aureus)에 대한 에틸아세테이트 분획의 MIC는 0.06%로 매우 큰 항균활성을 나타내었다. 에틸아세테이트 분획 중 aglycone 분획은 우수한 free raical [1-diphenyl-2-picrylhydrazyl (DPPH)] 소거활성($FSC_{50}=5.05{\mu}g/mL$)을 나타내었다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$ 계에서 에틸아세테이트 분획과 aglycone 분획의 총항산화능($OSC_{50}$)은 각각 0.05 및 $0.03{\mu}g/mL$이었다. Rose-bengal로 증감된 사람 적혈구의 용혈 실험에서 aglycone 분획은 $25{\mu}g/mL$의 농도에서 매우 큰 세포보호활성(${\tau}_{50}=480.3{\pm}0.2min$)을 나타냈다. 양파껍질 추출물 중 에틸아세테이트 분획과 aglycone 분획은 tyrosinase 저해활성($IC_{50}$)이 각각 9.16, $8.68{\mu}g/mL$이었고, aglycone 분획의 elastase의 저해활성은 $14.12{\mu}g/mL$이었다. 양파껍질 추출물 중 ethyl acetate 분획 0.1% 함유하는 크림의 경표피 수분 손실량은 추출물 함유 크림이 $6.8g/m^2h$로 대조군($8.3g/m^2h$)에 비해 경표피 수분 손실량 감소 효과를 나타내었다. 이상의 결과들은 양파껍질 추출물이 $^1O_2$ 혹은 다른 ROS를 소광시키거나 소거함으로써 그리고 ROS에 대항하여 세포막을 보호함으로써 생체계, 특히, 태양 자외선에 노출된 피부에서 항산화제로서 그리고 항노화제로서 작용할 수 있음을 가리킨다. 따라서 양파껍질 추출물은 미백이나 항주름관련 새로운 기능성화장품에의 응용이 가능함을 나타낸다.

Keywords

References

  1. E. H. Witt, P. Motchnik, and L. Packer, Evidence for UV light as an oxidative stressor in skin, eds. J. Fuchs and L. Packer, Oxidative Stress in Dermatology. 29, New York, Dekker (1993).
  2. I. Emerit, Free radicals and aging of the skin, eds. L. Emerit and B. Chance, Free radicals and aging, 328, Basel, Birkhauser (1992).
  3. C. S. Foote, Photosensitized oxidation and singlet oxygen; consequences in biological systems, ed. W. A. Pryor, 2, 85, Acdemic press, New York (1976).
  4. S. N. Park, Ph. D. Dissertation, Seoul National Univ., Seoul, Korea (1989).
  5. S. N. Park, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997).
  6. S. N. Park, Korean J. Food Sci. Technol., 35, 510 (2003).
  7. S. N. Park, J. Korean Ind. Eng. Chem., 14, 657 (2003).
  8. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: its prevention and therapy, antioxidants in disease mechanism and therapy, ed. H. Sies, 38, 639 (1997).
  9. R. M. Tyrrell and M. Pidoux, Photochem. Photobiol., 49, 407 (1989). https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  10. G. F. Vile and R. M. Tyrrell, Free Radical Biology & Medicine, 18, 721 (1995). https://doi.org/10.1016/0891-5849(94)00192-M
  11. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  12. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  13. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Photodermatology, 2, 15 (1985).
  14. A. Oikarinen and M. Kallioinen, Photodermatology, 6, 24 (1989).
  15. L. H. Kligman, UVA induced biochemical changes in hairless mouse skin collagen : a contrast to UVB effects, ed. F. Urbach, 209, Valdemar, Overland Park (1992).
  16. J. W. Choi, S. I. Kim, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  17. H. J. Yang and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 61 (2007).
  18. H. J. Yang and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 139 (2007).
  19. S. M. Jeon, S. I. Kim, J. Y. Ahn, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 145 (2007).
  20. J. Y. Kim, H. J. Yang, K. H. Le, S. M. Jeon, Y. J. Ahn, B. R Won, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  21. Y. J. Cho, I. S. Ju, O. J. Kwon, S. S. Chun, B. J. An, and J. H. Kim, J. Korea Soc. Appl. Biol. Chem., 51, 49 (2008).
  22. D. Y. Kang, M. O. Shin, J. H. Shon, and S. J. Bae, J. Life Science, 19, 52 (2009). https://doi.org/10.5352/JLS.2009.19.1.052
  23. T. Kaneko and N. Baba, Biosci. Biotechnol. Biochem., 63, 323 (1999). https://doi.org/10.1271/bbb.63.323
  24. S. Kawaii, Y. Tomono, E. Katase, K. Ogawa, and M. Yano, Biosci. Biotechnol. Biochem., 63, 896 (1999). https://doi.org/10.1271/bbb.63.896
  25. J. Sanderson, W. Mclauchlin, and G. Williamson, Free Rad. Biol. Med., 26, 639 (1999). https://doi.org/10.1016/S0891-5849(98)00262-7
  26. Z. Shutenko, Y. Henry, E. Pinard, J. Seylaz, P. Potier, F. Berthet, P. Girard, and R. Sercombe, Biochem. Pharmacol., 57, 199 (1999). https://doi.org/10.1016/S0006-2952(98)00296-2
  27. I. Goldman, M. Kopelberg, J. Devaene, and B. Schwartz, Throm. Haemo., 450 (1996).
  28. A. Gulsen, D. P. Makris, and P. Kefalas, Food Res. Int., 40, 7 (2007). https://doi.org/10.1016/j.foodres.2006.07.009
  29. D. Prakash, G. Upadhyay, B. N. Singh, and H. B. Singh, Food Chem., 104, 783 (2007). https://doi.org/10.1016/j.foodchem.2006.12.029
  30. T. C. Lines and M. Ono, Phytomedicine, 13, 236 (2006). https://doi.org/10.1016/j.phymed.2004.12.001
  31. Brahma N. Singh, B. R. Singh, R. L. Singh, D. Prakash, D. P. Singh, B. K. Sarma, G. Upadhyay, and H. B. Singh, Food Chem. Toxi., 47, 1161 (2009). https://doi.org/10.1016/j.fct.2009.02.004
  32. S. Balasenthil, S. Arivazhagan, C. R. Ramachandran, V. Ramachandran, and S. Nagini, J. Ethnopharmacol., 67, 189 (1999). https://doi.org/10.1016/S0378-8741(99)00015-X
  33. M. Valko, D. Leibfritz, J. Moncola, M. T. D. Cronin, M. Mazura, and J. Telser, Int. J. Biochem. Cell Biol., 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001