Abstract
In this paper, we propose a policy-gradient routing scheme under Reinforcement Learning that can be used adaptive QoS routing. A policy-gradient RL routing can provide fast learning of network environments as using optimal policy adapted average estimate rewards gradient values. This technique shows that fast of learning network environments results in high success rate of routing. For prove it, we simulate and compare with three different schemes.
본 논문에서는 강화학습(RL : Reinforcement Learning) 환경 하에서 정책 기울기 값 기법을 사용하는 적응적인 QoS 라우팅 기법을 제안하였다. 이 기법은 기존의 강화학습 환경 하에 제공하는 기법에 비해 기대 보상값의 기울기 값을 정책에 반영함으로써 빠른 네트워크 환경을 학습함으로써 보다 우수한 라우팅 성공률을 제공할 수 있는 기법이다. 이를 검증하기 위해 기존의 기법들과 비교 검증함으로써 그 우수성을 확인하였다.