DOI QR코드

DOI QR Code

Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites

  • Chen, Ming-Liang (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2011.02.20
  • Accepted : 2011.03.09
  • Published : 2011.03.31

Abstract

In this study, we prepared graphene by using the modified Hummers-Offeman method and then introduced the metals (Pt, Pd and Fe) for dispersion on the surface of the graphene for synthesis of metal-graphene composites. The characterization of the prepared graphene and metal-graphene composites was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM). According to the results, it can be observed that the prepared graphene consists of thin stacked flakes of shapes having a well-defined multilayered structure at the edge. And the metal particles are dispersed uniformly on the surface of the graphene with an average particle size of 20 nm.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, and D. Jiang, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306 666-69 (2004). https://doi.org/10.1126/science.1102896
  2. A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
  3. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene,” Nature, 438 201-4 (2005). https://doi.org/10.1038/nature04235
  4. J. C. Meyer, A. K. Geim, and M. I. Katsnelson, “The Structure of Suspended Graphene Sheets,” Nature, 446 60-3 (2007). https://doi.org/10.1038/nature05545
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater., 22 3906-24 (2010). https://doi.org/10.1002/adma.201001068
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438 197-200 (2005). https://doi.org/10.1038/nature04233
  7. S. Stankovich, D. A. Dikin, G. H. B. Dommett, and K. M. Kohlhass, “Graphene-based Composite Materials”, Nature, 442 282-86 (2006). https://doi.org/10.1038/nature04969
  8. F. H. Li, H. F. Yang, C. S. Shan, Q. X. Zhang, D. X. Han, A. Ivaska, and L. Niu, “The Synthesis of Perylene-coated Graphene Sheets Decorated with Au Nanoparticles and its Electrocatalysis Toward Oxygen Reduction”, J. Mater. Chem., 19 4022-25 (2009). https://doi.org/10.1039/b902791b
  9. R. Pasricha, S. Gupta, and A. K. Srivastava, “A Facile and Novel Synthesis of Ag-graphene-based Nanocomposites,” Small, 5 2253-59 (2009). https://doi.org/10.1002/smll.200900726
  10. H. M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, and K. M. AbouZeid, “Microwave Synthesis of Graphene Sheets Supporting Metal Nanocrystals in Aqueous and Organic Media,” J. Mater. Chem., 19 3832-37 (2009). https://doi.org/10.1039/b906253j
  11. C. Xu, X. Wang, and J. W. Zhu, “Graphene-metal Particle Nanocomposites,” J. Phys. Chem. C, 112 19841-45 (2008). https://doi.org/10.1021/jp807989b
  12. J. H. Warner, M. A. Bachmatiuk, and M. Wilson, “Examining Co-based Nanocrystals on Graphene Using Low-voltage Aberration-corrected Transmission Electron Microscopy,” ACS Nano, 4 470-76 (2010). https://doi.org/10.1021/nn901371k
  13. W. C. Oh and F. J. Zhang, “Preparation and Characterization of Graphene Oxide Reduced from a Mild Chemical Method,” Asian J. Chem., 23 875-79 (2011).
  14. K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda, and H. Ishida, “Exfoliated Graphene Sheets Decorated with Metal-metal Oxide Nanoparticles: Simple Preparation from Cation Exchanged Graphite Oxide,” Carbon, 49 1118-25 (2011). https://doi.org/10.1016/j.carbon.2010.11.017
  15. W. C. Oh, F. J. Zhang, and M. L. Chen, “Characterization and Photodegradation Characteristics of Organic Dye for Pt-titania Combined Multi-walled Carbon Nanotube Composite Catalysts”, J. Ind. Eng. Chem., 16 321-26 (2010). https://doi.org/10.1016/j.jiec.2010.01.032
  16. M. L. Chen, F. J. Zhang, and W. C. Oh, “Preparation and Catalytic Properties of Pt/CNT/$TiO_2$ Composite,” J. Kor. Cera. Soc., 47 83-287 (2010). https://doi.org/10.4191/KCERS.2010.47.4.269
  17. Y. F. Han, D. Kumar, and D. W. Goodman, “Particle Size Effects in Vinyl Acetate Synthesis Over Pd/$SiO_2$,” J. Catal., 230 353-58 (2005). https://doi.org/10.1016/j.jcat.2004.12.018
  18. V. Narayana Kalevaru, A. Benhmid, J. Radnik, B. Lucke, and A. Martin, “Effect of Sb Loading on Pd Nanoparticles and its Influence on the Catalytic Performance of Sb-Pd/$TiO_2$ Solids for Acetoxylation of Toluene,” J. Catal., 243 25-35 (2006). https://doi.org/10.1016/j.jcat.2006.06.023
  19. W. C. Oh, F. J. Zhang, Z. D. Meng, and K. Zhang, “Relative Photonic Properties of Fe/$TiO_2$-nanocarbon Catalysts for Degradation of MB Solution Under Visible Light,” Bull. Kor. Chem. Soc., 31 1128-34 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1128
  20. K. Zhang, J. G. Choi, and W. C. Oh, “Photocatalytic Activity of Fe and $TiO_2$ Embedded in a Carbon Matrix,” Asian J. Chem., 23 356-62 (2011).
  21. Z. D. Meng, K. Y. Cho, and W. C. Oh, “Photocatalytic Degradation of Methylene Blue on Fe-fullerene/$TiO_2$ Under Visible-light Irradiation,” Asian J. Chem., 23 847-51 (2011).
  22. K. S. Subrahmanyam, Arun K. Manna, Swapan K. Pati, and C. N. R. Rao, “A Study of Graphene Decorated with Metal Nanoparticles,” Chem. Phys. Lett., 497 70-5 (2010). https://doi.org/10.1016/j.cplett.2010.07.091
  23. X. W. Liu, J. J. Mao, P. D. Liu, and X. W. Wei, “Fabrication of Metal-graphene Hybrid Materials by Electroless Deposition,” Carbon, 49 477-83 (2011). https://doi.org/10.1016/j.carbon.2010.09.044
  24. T. T. Baby, S. S. Jyothirmayee Aravind, T. Arockiadoss, R. B. Rakhi, and S. Ramaprabhu, “Metal decorated graphene nanosheets as Immobilization Matrix for Amperometric Glucose Biosensor,” Sensors Actuat. B Chem., 145 71-7 (2010). https://doi.org/10.1016/j.snb.2009.11.022

Cited by

  1. Synthesis of Carbon Nanomaterials-CdSe Composites and Their Photocatalytic Activity for Degradation of Methylene Blue vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/964872
  2. Kinetics and Adsorption Behavior of the Methyl Blue at the Graphene Oxide/Reduced Graphene Oxide Nanosheet–Water Interface: A Comparative Study vol.58, pp.12, 2013, https://doi.org/10.1021/je400743r
  3. Stable Ni Nanoparticle–Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature vol.30, pp.11, 2014, https://doi.org/10.1021/la500156e
  4. Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications vol.22, pp.7, 2015, https://doi.org/10.1007/s10965-015-0776-5
  5. Degradation of Organic Dyes by CdSe Decorated Graphene Nanocomposite in Dark Ambiance vol.23, pp.5, 2015, https://doi.org/10.1080/1536383X.2014.885954
  6. Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.502
  7. Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber-graphene nanocomposites vol.55, pp.11, 2015, https://doi.org/10.1002/pen.24131
  8. Photocatalytic Dye Decomposition Effect of Binary Copper (I) Selenide-graphene Nanocomposites Synthesized with Facile Microwave-assisted Technique vol.27, pp.5, 2016, https://doi.org/10.14478/ace.2016.1066
  9. Preparation of Nanowire like WSe2-Graphene Nanocomposite for Photocatalytic Reduction of CO2 into CH3OH with the Presence of Sacrificial Agents vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02075-7
  10. Electrical Properties of Graphene Filled Natural Rubber Composites vol.812, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.812.263