DOI QR코드

DOI QR Code

Study on PEM-Fuel-Cell Humidification System Consisting of Membrane Humidifier and Exhaust Air Recirculation Units

막가습기와 공기극 재순환을 사용한 고분자 전해질 연료전지의 가습특성 해석

  • Byun, Su-Young (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Beom-Jun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Min-Soo (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 변수영 (서울대학교 기계항공공학부) ;
  • 김범준 (서울대학교 기계항공공학부) ;
  • 김민수 (서울대학교 기계항공공학부)
  • Received : 2009.07.28
  • Accepted : 2011.01.31
  • Published : 2011.04.01

Abstract

The humidification of reactant gases is crucial for efficiently operating PEM (polymer electrolyte membrane) fuel cell systems and for improving the durability of these systems. The recycle of the energy and water vapor of exhaust gas improves the system performance especially in the case of automotive application. The available humidification methods are steam injection, nozzle spray, humidification by enthalpy wheel, membrane humidifier, etc. However, these methods do not satisfy certain requirements such as compact design, efficient operation and control. In this study, a hybrid humidification system consisting of a membrane humidifier and exhaust-air recirculation units was developed and the humidification performance of this hybrid humidifier was analyzed. Finally, a new practical method for optimal design of PEM-fuel-cell humidification system is proposed.

고분자 전해질막 연료전지에서 공급 기체의 가습은 연료전지의 효율과 수명 향상 측면에서 필수적이다. 기존의 고분자 전해질막 연료전지의 가습 방법으로 물 분사나 막가습기, 엔탈피 휠 등이 사용되었다. 하지만, 이러한 외부 가습 방법은 시스템 부피를 크게 하고 고출력 구간에서 가습량이 부족한 단점이 있다. 가습 장치의 효율과 전체 연료전지 시스템 효율을 높이려면, 연료전지의 고온다습한 배출기체로부터 열과 수분을 회수할 필요가 있다. 본 연구에서는 연료전지의 고온다습한 배출공기를 재순환하여 공급공기를 1 차로 가습하고 소형의 막가습기로 2 차 가습하는 복합가습에 대한 해석적 연구를 수행하였다. 그리고 최적의 가습 시스템 설계를 위한 새로운 방법을 제안하였다.

Keywords

References

  1. Larminie, J. and Dicks, A., 2000, “Fuel Cell System Explained,” John Wiley & Sons, Ltd., Toronto.
  2. Zhang, L., Pan, M. and Quan, S., 2008, “Model Predictive Control of Water Management in PEMFC,” J. of Power Source, Vol. 180, pp. 322-329. https://doi.org/10.1016/j.jpowsour.2008.01.088
  3. Vasu, G.., Tangirala, A. K., Viswanathan, B. and Dhathathreyan, K. S., 2008, “Continuous Bubble Humidification and Control of Relative Humidity of H2 for a PEMFC System,” Int. J. Hydrogen Energy, Vol. 33, pp. 4640-4648. https://doi.org/10.1016/j.ijhydene.2008.05.051
  4. Yang, T., Shi, P. and Du, C., 2006, “Study on Selfhumidified PEMFC with Reactant Circulation,” Electrochimica Acta, Vol. 51, pp. 5618-5625. https://doi.org/10.1016/j.electacta.2006.02.036
  5. Cave, P., and Merida, W., 2008, “Water Flux in Membrane Fuel Cell Humidifiers: Flow Rate and Channel Location Effects,” J. of Power Sources, Vol. 175, pp. 408-418. https://doi.org/10.1016/j.jpowsour.2007.08.103
  6. Park, S.-K., Choe, S.-Y. and Choi, S.-H., 2008, “Dynamic Modeling and Analysis of a Shell-and-tube Type Gas-to-gas Membrane Humidifier for PEM Fuel Cell Application,” Int. J. of Hydrogen Energy, Vol. 33, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  7. Chen, D., Li, W. and Peng, H., 2008, “An Experimental Study and Model Validation of a Membrane Humidifier for PEM Fuel Cell Humidification Control,” J. of Power Sources, Vol. 180, pp. 461-467. https://doi.org/10.1016/j.jpowsour.2008.02.055
  8. Chen, D. and Peng, H., 2005, “A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control,” J. of Dynamic System, Measurement, and Control, Vol. 127, pp. 424-432. https://doi.org/10.1115/1.1978910
  9. Jung, S. H., Kim, S. L., Kim, M. S., Park, Y. and Lim, T. W., 2007, “Experimental Study of Gas Humidification with Injectors for Automotive PEM Fuel Cell Systems,” J. of Power Sources, Vol. 170, pp. 324-333. https://doi.org/10.1016/j.jpowsour.2007.04.013
  10. Huizing, R., Fowler, M., Merida, W. and Dean, J., 2008, “Design Methodology for Membrane-based Plate-and-frame Fuel Cell Humidifiers,” J. of Power Sources, Vol. 180, pp. 265-275. https://doi.org/10.1016/j.jpowsour.2008.01.046
  11. Thanapalan, K. K. T., Liu, G. P., Willians, J. G., Wang, B. and Rees, D., 2009, ”Review and Analysis of Fuel Cell System Modeling and Control,” Int. J of Computer Aided Engineering and Technology, Vol. 1, No. 2, pp. 145-157 https://doi.org/10.1504/IJCAET.2009.022783
  12. Bao, C., Ouyang, M. and Yi, B., 2006, “Modeling and Control of Air Stream and Hydrogen Flow with Recirculation in a PEM fuel Cell System – I. Controloriented Modeling,” Int. J. of Hydrogen Energy, Vol. 31, pp. 1879-1896. https://doi.org/10.1016/j.ijhydene.2006.02.031
  13. Vasu, G. and Tangirala, A. K., 2008, “Control of Air Flow Rate with Stack Voltage Measurement for a PEM Fuel Cell,” Int. Conf. on Fundamentals & Developments of Fuel Cells, Nancy, France.
  14. Pukrushpan, J. T., Peng, H. and Stefanopoulou, A. G.., 2002, “Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model,” Proc. of IMECE, New Orleans, USA.

Cited by

  1. Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction vol.37, pp.5, 2013, https://doi.org/10.3795/KSME-B.2013.37.5.503