Effect of Branching-agent Content on the Electrochemical Properties of Partially Fluorinated Poly(Arylene Ether Sulfone) Block Ionomer Membranes

부분불소계 Poly(Arylene Ether Sulfone) 블록이오노머막의 전기화학적 특성에 대한 분지체 함량의 효과

  • Jeon, Seong-Hoon (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Bong-Jun (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kang, Ho-Cheol (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Joo, Hyeok-Jong (Department of Polymer Engineering, Chungnam National University)
  • 전성훈 (한국화학연구원 환경자원연구센터) ;
  • 장봉준 (한국화학연구원 환경자원연구센터) ;
  • 강호철 (한국화학연구원 환경자원연구센터) ;
  • 김정훈 (한국화학연구원 환경자원연구센터) ;
  • 주혁종 (충남대학교 고분자공학과)
  • Received : 2010.11.06
  • Accepted : 2010.12.20
  • Published : 2011.03.30

Abstract

Partially fluorinated poly(arylene ether sulfone) block ionomer membranes with different branch degree for fuel cell applications were investigated. A sulfonable monomer, a non-sulfonable monomer and a trifunctional branching agent were synthesized and the sulfonable monomer was oligomerized to obtain block structures. The oligomer was then further polymerized with the non-sulfonable monomer and the branching agent. The mole ratio of oligomer : non-sulfonable monomer was fixed at 4:6 and the content of the branching agent was varied from 0 to 2 mol% (BBC-40Bx). Post-sulfonation of BBC-40Bx was carried out using chlorosulfonic acid (CSA) (SBBC-40Bx). All the synthesized compounds were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR. It was confirmed that the ion exchange capacity (IEC), water uptake and ion conductivity of SBBC-40Bx increased with the increment of branching agent content.

연료전지용 프로톤 전도성 고분자로서 분지체 함량이 조절된 부분불소계 Sulfonated poly(arylene ether sulfone) 이오노머 블록공중합체막의 합성 및 특성에 관하여 연구하였다. 분지형태의 부분불소계 블록고분자 전해질막 제조를 위해 설폰화 활성이 높은 단량체, 설폰화 활성이 낮은 단량체 그리고 분지체를 합성하였고, 블록형성을 위해 biphenyl계 올리고머를 합성하였다. 분지체의 양에 따른 막 특성변화를 고찰하기 위해, biphenyl계 올리고머와 sulfonyl계 단량체의 몰 비를 4 : 6으로 고정하고 분지체의 함량을 2 mol%까지 늘려가면서 중부가형태의 열중합을 통하여, 다른 분지체의 함량을 가지는 공중합체를 얻었다(BBC-40Bx). 제조된 분지형태의 공중합체들을 chlorosulfonic acid (CSA)를 사용하여 후설폰화(post-sulfonation)하였다(SBBC-40Bx). 제조된 화합물, 단량체, 분지체 및 중합체들은 $^1H$-NMR, $^{19}F$-NMR 및 FT-IR분석을 통하여 성공적으로 합성되었음을 확인하였다. 분지형태의 블록공중합체(SBBC-40Bx)는 분지체의 함량이 증가함에 따라 이온교환능력(IEC), 함수율 및 이온전도도가 증가하는 경향을 보였다.

Keywords

References

  1. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochimica Acta, 43, 3693 (1998). https://doi.org/10.1016/S0013-4686(98)00127-3
  2. R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, "Fuel economy of hydrogen fuel cell vehicles", J. Power Sources, 130, 192 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.061
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative Polymer Systems for Proton Exchange Membranes (PEMs)", Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  4. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  5. O. Savadogo, "Emerging membrane for electrochemical system: (I) solide polymer electrolyte membranes for fuel cell systems", J. New. Mat. Electrochem. Systems, 1, 47 (1998).
  6. L. Li and Y. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005). https://doi.org/10.1016/j.memsci.2004.08.015
  7. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  8. Y. Yang, Z. Shi, and S. Holdcroft, "Synthesis of sulfonated polysulfone-block-PVDF copolymers: enhancement of proton conductivity in low ion exchange capacity membranes", Macromolecules, 37, 1678 (2004). https://doi.org/10.1021/ma035659e
  9. D. S. Kim, H. B. Park, and Y. M. Lee, "Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cell", J. Polym. Sci. Part A: Polym. Chem., 43, 5620 (2005). https://doi.org/10.1002/pola.21066
  10. K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and Characteristics of Partially Covalent-crosslinked Poly(arylene ether sulfon)s Use in a Fuel Cell", Membrane Journal, 18, 274, (2008).
  11. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  12. M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., 234, 75 (2004). https://doi.org/10.1016/j.memsci.2003.12.021
  13. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes", J. Membr. Sci., 229, 95 (2004). https://doi.org/10.1016/j.memsci.2003.09.019
  14. K. Miyatake, H. Zhou, T. Matsuo, H. Uchida, and M. Watanabe, "Proton conductive polyimide electrolytes containing trifluoromethyl groups: synthesis, properties, and DMFC performance", Macromolecules, 37, 4961 (2004). https://doi.org/10.1021/ma049547e
  15. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001). https://doi.org/10.1016/S0032-3861(00)00384-0
  16. H. Ghassemi, J. E. McGrath, and T. A. Zawodzinski Jr., "Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell", Polymer, 47, 4132 (2006). https://doi.org/10.1016/j.polymer.2006.02.038
  17. M. Sankir, Y. S. Kim, B. S. Pivovar, and J. E. McGrath, "Proton exchange membrane for DMFC and H2/air fuel cells: Synthesis and characterization of partially fluorinated disulfonated poly(arylene ether benzonitrile) copolymers", J. Membr. Sci., 299, 8 (2007). https://doi.org/10.1016/j.memsci.2007.04.004
  18. N. Y. Arnett, W. L. Harrison, A. S. Badami, A. Roy, O. Lane, F. Cromer, L. Dong, and J. E. McGrath, "Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells", J. Power Sources, 172, 20 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.051
  19. Y. Li, A. Roy, A. S. Badami, M. Hill, J. Yang, S. Dunn, and J. E. McGrath, "Synthesis and characterization of partially fluorinated hydrophobic-hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane", J. Power Sources, 172, 30 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.046
  20. K. B. Wiles, C. M. de Diego, J. de Abajo, and J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane-electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 22 (2007). https://doi.org/10.1016/j.memsci.2007.01.036
  21. B. J. Chang, D. J. Kim, J. H. Kim, S. B. Lee, and H. J. Joo, "Sulfonated poly(fluorene-co-sulfone) ether membranes containing perfluorocyclobutane groups for fuel cell applications", J. Membr. Sci., 325, 989 (2008). https://doi.org/10.1016/j.memsci.2008.09.036
  22. J. W. Park, B. J. Chang, J. H. Kim, and Y. T. Lee, "Preparation and characteristics of partially fluorinated-sulfonated poly(biphenylene-co-sulfone)ether membranes for polymer electrolyte membrane fuel cell" Polymer (Korea), 34, 137 (2010).
  23. M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated perfluorocyclobutyl biphenylene polymer electroryte membrane for fuel cell", Membrane Journal, 15, 355, (2005).
  24. N. Takimoto, S. Takamuki, M. Abe, A. Ohira, H. S. Lee, and J. E. Mcgrath, "Conductive area ratio of multiblock copolymer electrolyte membranes evaluated by e-AFM and its impact on fuel cell performance", J. Power Sources, 194, 662 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.045
  25. A. Roy, H. S. Lee, and J. E. McGrath, "Hydrophilic -hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes", J. Polym. Sci. Part B: Polym. Chem., 49, 5037, (2008).
  26. L. E. Karlsson and P. Jannasch, "Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones", J. Membr. Sci., 230, 61 (2004). https://doi.org/10.1016/j.memsci.2003.10.033
  27. T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, and J. Ding, "Highly fluorinated combshaped copolymers as proton exchange membranes (PEMs): Improving PEM properties through rational design", Adv. Funct. Mater., 16, 1814 (2006).
  28. Z. Li, J. Ding, G. P. Robertson, and M. D. Guiver, "A novel bisphenol monomer with grafting capability and the resulting poly(arylene ether sulfone)s", Macromolecules, 39, 6990 (2006). https://doi.org/10.1021/ma061054h
  29. S. Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups", J. Polym. Sci. Part A: Polym. Chem., 46, 3860 (2008). https://doi.org/10.1002/pola.22690
  30. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s", Macromolecules, 41, 281 (2008). https://doi.org/10.1021/ma071422x
  31. H. S. Park, D. W. Seo, S. W. Choi, Y. G. Jeong, J. H. Lee, D. I. Kim, and W. G. Kim, "Preparation and characterization of branched and linear sulfonated poly(ether ketone sulfone) proton exchange membranes for fuel cell applications", J. Polym. Sci. Part A: Polym. Chem., 46, 1792 (2008). https://doi.org/10.1002/pola.22522
  32. J. K. Koh, J. K. Choi, J. T. Park, J. H. Goh, and J. H. Kim, "Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer", Membrane Journal, 18, 261 (2008).
  33. D. W. Smith Jr., D. A. Babb, H. V. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. W. Boone, C. Langhoff, and M. Radler, "Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials", J. Fluorine Chem., 104, 109 (2000). https://doi.org/10.1016/S0022-1139(00)00233-5
  34. S. Wong, H. Ma, A. K. Y. Jen, R. Barto, and C. W. Frank, "Highly fluorinated trifluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications", Macromolecules, 36, 8001 (2003). https://doi.org/10.1021/ma034467g
  35. X. Shang, S. Tian, L. Kong, and Y. Meng, "Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane", J. Membr. Sci., 266, 94 (2005). https://doi.org/10.1016/j.memsci.2005.05.014
  36. D. A. Babb, B. R. Ezzell, K. S. Clement, W. F. Richey, and A. P. Kennedy, "Perfluorocyclobutane aromatic ether polymers", J. Polym. Sci., Part A: Polym. Chem., 31, 3465 (1995).
  37. A. P. Kennedy, D. A. Babb, J. N. Bremmer, and A. J. Pasztor Jr., "Perfluorocyclobutane aromatic ether polymers. II. thermal/oxidative stability and decomposition of a thermoset polymer", J. Polym. Sci. Part A: Polym. Chem., 33, 1859 (1995). https://doi.org/10.1002/pola.1995.080331113
  38. A. S. Badami, O. Lane, H. S. Lee, A. Roy, and J. E. McGrath, "Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells", J. Membr. Sci., 333, 1 (2009). https://doi.org/10.1016/j.memsci.2008.12.066
  39. T. Erdogan, E. E. Unveren, T. Y. Inan, and B. Birkan, "Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell", J. Membr. Sci., 344, 172, (2009). https://doi.org/10.1016/j.memsci.2009.07.048