Preparation of PES Hollow Fiber Membranes and Their $O_2/N_2$ Permeation Properties

폴리이서설폰 중공사막의 제조 및 $O_2/N_2$ 투과특성

  • Park, Sung-Ryul (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Bong-Jun (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Ahn, Hyo-Seong (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Kwon (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Environment and Resources Research Center, Korea Research Institute of Chemical Technology)
  • 박성률 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 장봉준 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 안효성 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 김동권 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 김정훈 (한국화학연구원 그린화학연구단 환경자원연구센터)
  • Received : 2010.10.26
  • Accepted : 2011.03.17
  • Published : 2011.03.30

Abstract

Highly enriched oxygen is used in energy-efficient combustion due to decreased non-flammable nitrogen, while high purity nitrogen is used for explosion proof in the LNG ships and keeping the freshness of green stuffs. Membrane technology can be used in these $O_2$ and $N_2$ generation with low energy consumption. In this study, PES was used as a membrane material and 1-methyl-2-pyrollidone (NMP) and acetone were employed as a good solvent and nonsolvent addictive (swelling agent to PES), respectively. Dope solutions were prepared by changing the content of acetone (0, 6.5, 15, 25, 31.5 wt%) in 37 wt% PES solutions. Hollow fiber spinning was performed at 0~10 cm of air-gap distances for each dope solution. $O_2/N_2$ selectivity and permeability were investigated by comparing of hollow fibers coated or not by silicons. $O_2/N_2$ selectivity increased and permeance of $O_2$ and $N_2$ decreased with increasing air-gap height independently of acetone addictions. Optimized PES hollow fibers were obtained with 37/6.5/56.5 wt% PES/acetone/NMP dope solution and 10 cm air-gap, which showed 7.3 of $O_2/N_2$ selectivity and 4.3 GPU of $O_2$ permeability after silicon coating.

공기 중 산소의 분압이 높아지면 불연성인 질소의 감소로 높은 열효율을 낼 수 있으며, 고농도의 질소는 LNG선의 방폭기체 및 청과류의 신선도를 유지하는데 이용되므로 효율적인 공기 중의 산소/질소 분리 공정은 매우 중요하다. 분리막은 적은 에너지 소모로 산소와 질소를 동시에 분리 농축시킬 수 있다. 본 연구에서는 막 재료로 폴리이서설폰을, 방사용매로 NMP를 그리고 첨가제로는 비용매이면서 PES를 잘 팽윤시키는 Acetone을 사용하였다. 방사용액을 아세톤의 첨가량의 변화에 따라 0, 6.5, 15, 25, 31.5% (wt%)로 조절하여 제조하였고, 각 방사용액을 0~10 cm의 방사높이 변화에 따라 방사하였다. 제조된 중공사막은 실리콘을 코팅하여 산소 및 질소의 선택도 및 투과도를 코팅전후와 비교하여 조사하였다. Acetone의 함량 변화에 크게 관계없이 방사높이가 증가할수록 투과도는 감소하고 선택도는 증가하였다. 연신방법을 이용하여 방사한 결과 자유낙하(free fall)로 방사한 중공사막에 비해 선택도는 약간 감소하였지만 투과도는 증가하는 것으로 나타났다. 최적의 중공사막은 폴리이서설폰 37 wt%, Acetone 6.5 wt% NMP 56.5 wt%의 용액을 사용하였고, 실리콘 코팅 후에 외경 $320{\mu}m$와 7.3의 $O_2/N_2$ 선택도 및 산소투과도 4.3 GPU의 우수한 성능을 나타내었다.

Keywords

References

  1. Anonymous, "Facts and figures for the chemical industry", Chem. Eng. News, 74, 38 (1996).
  2. J. Kim, B. Yeom, and B. Min, "Research trend on polymer gas separation membrane", Polymer Sci. Tech., 16, 436 (2005).
  3. H.-S. Kim, H.-K. Kim, K.-Y. Ahn, and Y.-M. Kim, "Characteristics for effects of $CO_{2}$ addition to oxygen-enriched combustion", Trans. Korean Soc. Mecha. Eng., B., 28, 9 (2004). https://doi.org/10.3795/KSME-B.2004.28.1.009
  4. H. Jeong, H. Ahn, I. Song, H. Jeon, D. Jeong, and Y. Lee, "Dissolutin of oxygen in water by nonporous hollow fiber membrane contactor", Membrane Journal, 17, 352 (2007).
  5. B. Bang, S. Ryu, E. Lee, T. Lee, H. Yu, M. Choi, and S. Song, "Development of oxygen enriched combustion system using oxygen membrane", The 40th Kosco Symposium, 91 (2010).
  6. S. Alexander Stern, "Polymers for gas separations: the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  7. J. Hao and P. A. Rice, "Upgrading low-quality natural gas with $H_{2}S$- and $CO_{2}$-selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams", J. Membr. Sci., 320, 108 (2008). https://doi.org/10.1016/j.memsci.2008.03.040
  8. W. J. Koros and R. Mahajan, "Pushing the limits on possibilities for large scale gas separation: which strategies?" J. Membr. Sci., 175, 181 (2000). https://doi.org/10.1016/S0376-7388(00)00418-X
  9. P. S. Puri, "Gas separation membranes current status", La Chi. e I'Ind., 78, 815 (1996).
  10. N. Y. Li, R. B. Long, and E. J. Henley, "Membrane Separation Process", Ind. End. Chem., 57, 18 (1965).
  11. R. Prasad, F. Notaro, and D. R. Thompson, "Evolution of membranes in commercial air separation", J. Membr. Sci., 94, 225 (1994). https://doi.org/10.1016/0376-7388(93)E0193-N
  12. X. G. Li and M. R. Huang, "Multilayer Ultrathin-Film Composite Membranes for Oxygen Enrichment", J. App. Polym. Sci., 66, 2139 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971219)66:11<2139::AID-APP10>3.0.CO;2-X
  13. G. Bisio, A. Bosio, and G. Rubatto, "Thermodynamics applied to oxygen enrichment of combustion air", Ener. Conv. and Mana., 43, 2589 (2002). https://doi.org/10.1016/S0196-8904(01)00194-7
  14. H. Wang, S. Werth, T. Schiestel, and J. Caro, "Perovskite Hollow-Fiber Membranes for the Production of Oxygen-Enriched Air", Angew. Chem. Int. Ed., 44, 6906 (2005). https://doi.org/10.1002/anie.200501914
  15. L. M. Robeson, B. D. Freeman, D. R. Paul, and B. W. Rowe, "An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis", J. Membr. Sci., 341, 178 (2009). https://doi.org/10.1016/j.memsci.2009.06.005
  16. L. M. Robeson, "Polymer membranes for gas separation", Current Opinion in Solid State and Materials Science, 4, 549 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  17. Y. Li, C. Cao, T. S. Chung, and K. P. Pramoda, "Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation", J. Membr. Sci., 245, 53 (2004). https://doi.org/10.1016/j.memsci.2004.08.002
  18. M. Mulder, Basic Principles of Membrane Technology, pp. 22-61, Kluwer Academic Publishers, (1996).
  19. S.-H. Choi, J.-H. Kim, B.-S. Kim, and S.-B. Lee, "Multi-stage membrane process for $CO_{2}$ separation from flue gas using PES hollow fiber membrane modules", Membrane Journal, 15, 310 (2005).
  20. D.-H. Kim, Y.-M. An, H.-D. Jo, J.-S. Park, and H.-K. Lee, "Studies on the $N_{2}$/$SF_{6}$ permeation be haviors using the polyethersulfone hollow fiber membrane", Membrane Journal, 19, 244 (2009).
  21. T. S. Chung, S. K. Teoh, and X. Hu, "Formation of ultrathin high-performance polyethersulfone hollow- fiber membranes", J. Membr. Sci., 133, 161 (1997). https://doi.org/10.1016/S0376-7388(97)00101-4
  22. A. Brunetti, S. Simone, F. Scura, G. Barbieri, A. Figoli, and E. Drioli, "Hydrogen mixture separation with PEEK-WC asymmetric membranes", Sep. and Pur. Tech., 69, 195 (2009). https://doi.org/10.1016/j.seppur.2009.07.018
  23. J. C. Jansen, M. Macchione, C. Oliviero, R. Mendichi, G. A. Ranieri, and E. Drioli, "Rheological evaluation of the influence of polymer concentration and molar mass distributionon the formation and performance of asymmetric gas separation membrane sprepared by dry phase inversion", Polymer, 46, 11366 (2005). https://doi.org/10.1016/j.polymer.2005.10.041
  24. S. H. Choi, "Preparation and characterization of asymmetric PES hollow fiber membranes and modules for the separation of $CO_{2}$/$N_{2}$", Ph.D Dissertation, Univ. of Science and Technology, Daejeon, Korea (2008).
  25. I. Song, H. Ahn, H. Jeon, H.-K. Jeong, Y. Lee, J.-H. Kim, and S.-B. Lee, "Carbon dioxide separation by hollow fiber membrane of polyethersulfone : Comparison of experimental results with numerical analysis data", Membrane Journal, 17, 134 (2007).
  26. J.-H. Kim, W.-I. Sohn, S.-H. Choi, and S.-B. Lee, "Preparation of asymmetric polyethersulfone hollow fiber membranes for flue gas separation", Membrane Journal, 15, 147 (2005).
  27. N. Peng, T. S. Chung, and K. YuWang, "Macrovoid evolution and critical factors to form macrovoid- free hollow fiber membranes", J. Membr. Sci., 318, 363 (2008). https://doi.org/10.1016/j.memsci.2008.02.063
  28. C. Cao, T. S. Chung, S. B. Chen, and Z. Dong, "The study of elongation and shear rates in spin ning process and its effect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes", Chem. Eng. Sci., 59, 1053 (2004). https://doi.org/10.1016/j.ces.2003.10.023