Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA

CTA를 이용한 중공사형 기체분리막의 제조 및 특성

  • 고형철 ((주)에어레인) ;
  • 하성용 ((주)에어레인) ;
  • 남상용 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단)
  • Received : 2011.03.21
  • Accepted : 2011.03.25
  • Published : 2011.03.30

Abstract

Cellulose triacetate (CTA) polymer among cellulose esters were used for preparing hollow fiber membranes by phase separation method to investigate the gas permeation properties. To endow gas separation properties, 1,4-dioxane and LiCl were used as additives in the polymer dope solution. The spinning conditions including spinning temperature were controlled to form an active skin layer on the hollow fiber surface. Scanning electron microscopy was used to examine morphology of surface and cross section of the prepared CTA hollow fibers. The gas permeation performance of CTA hollow fiber membranes showed $P_{CO2}$ = 17 GPU and ${\alpha}_{CO2/N2}$ = 48.

본 연구에서는 셀룰로오스 트리아세테이트(CTA) 고분자를 이용한 중공사형 분리막을 상분리법에 의해 제조하였으며, 제조된 중공사 분리막의 기체분리 성능을 평가하였다. 제조된 중공사형 분리막의 기체분리 특성을 부여하기 위해서 1,4-dioxane을 10 wt.% 내외로 첨가하였다. 1,4-dioxane의 첨가에 의해 중공사 표면에 치밀층 형성을 위해서는 1,4-dioxane이 표면에서 증발되는 것이 필수적이며, 이를 위해 air-gap의 조절에 의해 중공사 표면에 치밀층이 생성되도록 하였다. 제조된 CTA 중공사형 기체분리막의 표면 및 단면의 모폴로지 측정을 위하여 전자주사현미경을 사용하였다. 또한 CTA 중공사형 기체분리막의 산소, 질소, 이산화탄소에 대한 기체투과도를 측정하였으며, 이 때 $P_{CO2}$ = 17 GPU, ${\alpha}_{CO2/N2}$ = 48을 나타내었다.

Keywords

References

  1. B. K. Sea, Y. I. Park, and K. H. Lee, "Membrane Separation for $CO_{2}$ Emission Control", HWAHAK KONGHAK, 41, 415 (2003).
  2. C. Hendriks, "Carbon Dioxide Removal from Coal Fired Power Plant", pp. 53-81, Springer, New York, NY (1994).
  3. D. L. Ellig, J. B. Althouse, and F. P. McCandless, "Concentration of Methane from Mixtures with Carbon Dioxide by Permeation through Polymeric Films", J. Membr. Sci., 6, 259 (1980). https://doi.org/10.1016/S0376-7388(00)82167-5
  4. D. R. Paul and Y. P. Yampol'skii, "Polymeric Gas Separation Membranes", CRC Press, Boca Raton, FL (1994).
  5. Y. Osada and T. Nakagawa, "Membrane Science and Technology", CRC press, Boca Raton, FL (1992).
  6. K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas Permeation Properties of Polyether Imide Segmented Copolymer", Macromolecules, 29, 6990 (1995).
  7. M. Sossna, M. Hollas, J. Schaper, and T. Scheper, "Structural Development of Asymmetric Cellulose Acetate Microfiltration Membranes prepared by a Single-layer Dry-casting Method", J. Membr. Sci., 289, 7 (2007). https://doi.org/10.1016/j.memsci.2006.11.024
  8. M. A. Chaudry, "Water and ions transport mechanism in hyperfiltration with symmetric cellulose acetate membranes", J. Membr. Sci., 209, 316 (2002).
  9. L. Kastelan-Kunst, V. Dananic, B. Kunst, and K. Kosutic, "Preparation and Porosity of Cellulose Triacetate Reverse Osmosis Membranes", J. Membr. Sci., 109, 223 (1996). https://doi.org/10.1016/0376-7388(95)00191-3
  10. B. Cai, Y. Zhou, and C. Gao, "Modified Performance of Cellulose Triacetate Hollow Fiber Membrane", Desalination, 146, 331 (2002). https://doi.org/10.1016/S0011-9164(02)00507-6
  11. H. Y. Hwang, H. C. Koh, and S. Y. Nam, "Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis", Membrane Journal, 17, 227 (2007).
  12. S. W. Yoon, B. S. Lee, B. S. Lee, S. I. Cheong, and J. W. Rhim, "Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes", Membrane Journal, 19, 237 (2009).
  13. Y. B. Lee, H. B. Park, J. K. Shim, and Y. M. Lee, "Synthesis and Caracterization of Polyamideimide-Branched Siloxane and Its Gas-Separation", J. Appl. Polym. Sci., 74, 965 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991024)74:4<965::AID-APP23>3.0.CO;2-4
  14. R. M. Barrer, "Permeation, Diffusion and Solution of Gases in Organic Polymers", Trans Raraday Coc., 35, 628 (1939).
  15. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", Membrane Journal, 20, 304 (2010).
  16. I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes", ACS symposium Series, 744, 1 (1999).
  17. M. D. Heinz-Joachim and F. Elizabeth, "Modified membranes", AU patent 2002214802 November 09 (2001).
  18. J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8