DOI QR코드

DOI QR Code

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh (Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research)) ;
  • Brahmbhatt, H. (Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research)) ;
  • Trivedi, G.S. (Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research)) ;
  • Bhattacharya, A. (Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research))
  • Received : 2010.11.19
  • Accepted : 2011.06.03
  • Published : 2011.07.25

Abstract

Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.

Keywords

References

  1. Aksu, Z. and Yener, J. (1998), "Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge", Process Biochem., 33(6), 649-655. https://doi.org/10.1016/S0032-9592(98)00029-6
  2. Arsuga, J.M., Lopez, M., Sotto, A. and Rosario, G. (2006), "Retention of phenols and carboxylic acids by nano filtration/reverse osmosis membrane: sieving and membrane-solute interaction effects", Desalination, 200, 731-733. https://doi.org/10.1016/j.desal.2006.03.502
  3. Arsuga, J.M., Lopez, M. and Sotto, A. (2010), "Co-relation between retention and adsorption of phenolic compounds in nanofiltration membranes", Desalination, 250, 829-832. https://doi.org/10.1016/j.desal.2008.11.051
  4. Baek, K. Kim, B.K. and Wang J.W. (2003), "Application of micellar enhanced ultrafiltration for nutrients removal", Desalination, 156(1-3), 137-144. https://doi.org/10.1016/S0011-9164(03)00336-9
  5. Baek, K. and Wang, J.W. (2004), "Simultaneous removal of Chlorinated aromatic hydrocarbons, nitrate, and chromate using micellar-enhanced ultrafiltration", Chemosphere, 57(9), 1091-1097. https://doi.org/10.1016/j.chemosphere.2004.08.017
  6. Belhateche, D.H. (1995), "Choose appropriate waste water treatment technologies", Chem. Eng. Prog., 91(8), 32-51.
  7. Bellona, C., Drewes, J.E., Xu, P. and Amy, G. (2004), "Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review", Water Research, 38(12), 2795-2809. https://doi.org/10.1016/j.watres.2004.03.034
  8. Bhattacharya, A. and Mishra, B.N. (2004), "Grafting: A versatile means of Polymer modification Techniques, factors and applications", Prog. Polym. Sci., 29(8), 767-814. https://doi.org/10.1016/j.progpolymsci.2004.05.002
  9. Bhattacharya, A. (2005), "Remediation of pesticides polluted waters through membranes", Sep. Purif. Rev., 35, 1-38.
  10. Bhattacharya, A., Ray, P., Brahmbhatt, H., Vyas, K.N., Joshi, S.V., Devmurari, C.V. and Trivedi, J.J. (2006), "Study in Pesticides removal performance by low-pressure reverse osmosis membranes", J. Appl. Polym. Sci., 102, 3575-3579. https://doi.org/10.1002/app.24818
  11. Bielska, M. and Szymanowski, J. (2004), "Micellar enhanced ultrafiltration of nitrobenzene and 4-nitrophenol", J. Membrane Sci., 243(1-2), 273-281. https://doi.org/10.1016/j.memsci.2004.06.030
  12. Bukasowska, B. and Kowalska, S. (2003), "The presence and toxicity of Phenol Derivatives-their effect on human erythrocytes", Current topics in Biophys., 27, 43-48.
  13. Genononi, G.P. (1997), "Influence of the energy relationships of organic compounds on Toxicity to the CladoceranDaphnia magnaand the FishPimephales promelas", Ecotoxical Environ. Safety, 36(1), 27-37. https://doi.org/10.1006/eesa.1996.1481
  14. Heijman, S.G.J. and Hopman, R. (1990), "Activated carbon filtration in drinking water production: Model prediction and new concepts", Colloids and Surf A: Phys. and Eng. Aspects, 151(1-2), 303-310.
  15. Kim, J.Y., Lee, H.K., Baik, K.J. and Kim. S.C. (1997), "Liquid-liquid phase separation in polysulfone/solvent/ water systems", J. Appl. Polym. Sci. 65(13), 2643-2653. https://doi.org/10.1002/(SICI)1097-4628(19970926)65:13<2643::AID-APP6>3.0.CO;2-B
  16. Kiso, Y., Sugiura, Y, Kitao, T. and Nishimura, K. (2001), "Effects of hydrophobicity and morecular size on rejection of aromatic pesticides with nanofiltration", J. Membrane Sci. 192(1-2), 1-10. https://doi.org/10.1016/S0376-7388(01)00411-2
  17. Kumar, Y., Popat, K.M., Brahmbhatt, H., Ganguly, B. and Bhattacharya, A. (2008), "Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes", J. Haz. Mat. 154(1-3), 426-431. https://doi.org/10.1016/j.jhazmat.2007.10.060
  18. LaGrega, M., Buckingham, P. and Evans, J. (1994), Hazardous Waste Management, McGraw-Hill Inc, New York.
  19. Li, C.W., Liu, C.K. and Yen W. S. (2006), "Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions", Chemosphere, 63(2), 353-358. https://doi.org/10.1016/j.chemosphere.2005.07.017
  20. Liu, C.K., Li, C.W. and Lin, C.Y. (2004), "Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands", Chemosphere, 57(7), 629-634. https://doi.org/10.1016/j.chemosphere.2004.06.035
  21. Martin-Gullan, I. and Font, R. (2001), "Dynamic pesticide removal with activated carbon filters", Water Res., 35(2), 516-520. https://doi.org/10.1016/S0043-1354(00)00262-1
  22. Motel, G., Gracia A. and Lachaise, J. (1991), "Enhanced nitrate ultrafiltration by cationic surfactant", J. Membrane Sci., 56(1), 1-12. https://doi.org/10.1016/0376-7388(91)85012-T
  23. Morgan, P.W. (1965), Condensation Polymers: By Interfacial and Solution Methods; Interscience Publishers, NY.
  24. Musnicki, W.J., Nathan, W.L., Phillips, R.J. and Dungan, S.R. (2011), "Diffusion of Sodium dodecyl sulfate micelles in agarose gels", J. Colloid Interface Sc. 356, 165-175. https://doi.org/10.1016/j.jcis.2010.12.067
  25. Nghiem, L.D. and Schafer, A.I. (2005), "Nanofiltration of Hormone Mimicking Trace organic contaminants", Sep. Sci. Tech., 40, 2633-2649. https://doi.org/10.1080/01496390500283340
  26. Purukait, M.K., Dasgupta, S., and De, S. (2005a), "Separation of aromatic alcohols using micellar-enhanced ultrafiltration and recovery of surfactant", J. Membrane Sci., 250(1-2), 47-59. https://doi.org/10.1016/j.memsci.2004.10.014
  27. Purukait, M.K., Dasgupta, S., and De, S. (2005b), "Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures", J. Colloid and Interface Science, 285(1), 395-402. https://doi.org/10.1016/j.jcis.2004.11.036
  28. Scamehorn J.F. and Harwell, J.H. (1989), Surfactant-Based Separation Processes, Marcel Dekker, New York.
  29. Stropmik, C., Germic, L. and Zeral, B. (1996), "Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion", J. Appl. Polym. Sci., 61(10), 1821-1830. https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1821::AID-APP24>3.0.CO;2-3
  30. Syamal, M., De, S. and Bhattacharya, P.K. (1995), "Phenol solubilization by certyl pyridinium chloride micelles in micellar enhanced ultrafiltration", J. Membrane Sci., 137, 99-105.
  31. Tung, C.C., Yang, Y.M., Chang, C.H. and Maa, J.R. (2002), "Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants", Waste Management, 22(7), 695-701. https://doi.org/10.1016/S0956-053X(02)00049-1
  32. Vander Bruggen, B., Scbaep, J., Wilms, D. and Vandecastecle, C. (1999), "Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration", J. Membrane Sci., 156(1), 29-41. https://doi.org/10.1016/S0376-7388(98)00326-3
  33. Vander Bruggen, B., Verliefde, A., Braeken, L., Cornelissen, E.R., Moons, K., Verberk, J. QJC, van Dijk H. JC and Amy, G. (2006), "Assesment of a semiquantitive method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration", J. Chem. Tech. Biotech. 81(7), 1166-1176. https://doi.org/10.1002/jctb.1489
  34. Yogesh, Popat, K.M., Ganguly, B., Brahmbhatt, H. and Bhattacharya, A. (2008), "Studies on the separation performances of chlorophenol compounds from water by Thin film composite Membranes", Macromol. Res., 16(7), 590-595. https://doi.org/10.1007/BF03218565
  35. Yogesh, Brahmbhatt, H. and Bhattacharya, A. (2010), "Remediation of simazine from water through low pressure thin film composite membrane using surfactants", Int. J. Env. Eng., 2(1-3), 4-14. https://doi.org/10.1504/IJEE.2010.029817